Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Sep 1;64(3):320–342. doi: 10.1085/jgp.64.3.320

Mode of Action of Chronotropic Agents in Cardiac Purkinje Fibers

Does Epinephrine Act by Directly Modifying the External Surface Charge?

Richard W Tsien 1
PMCID: PMC2226176  PMID: 4370200

Abstract

Hauswirth et al. (1968) proposed that epinephrine acts on i KK2 by adding its own positive charge to the external membrane surface near the i KK2 channel. This hypothesis was tested by using noncationic compounds, theophylline and R07-2956, which mimicked epinephrine's effects on pacemaker activity and on i KK2. In maximally effective doses, theophylline or R07-2956 occluded the effect of epinephrine, indicating a shared final common mechanism. Since theophylline and R07-2956 are noncationic at pH 7.4, the common mechanism cannot be a direct change in external surface charge. On the contrary, epinephrine does not interfere with the voltage shift produced by La+++, which is thought to modify the external surface charge. The results argue against the original hypothesis but leave open the possibility that an alteration in internal surface charge generates the observed voltage shift. The potency of theophylline and R07-2956 as phosphodiesterase inhibitors suggests that the final common mechanism begins with the elevation of intracellular cyclic AMP, leading to a saturable process which limits the voltage shift's magnitude. This hypothesis is used to generate dose-response curves describing the combined effects of epinephrine and theophylline, and these are compared with experimental data.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinks J. R., Olson C. B., Jewell B. R., Bravený P. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action. Circ Res. 1972 Apr;30(4):367–392. doi: 10.1161/01.res.30.4.367. [DOI] [PubMed] [Google Scholar]
  2. Davis L. D., Temte J. V. Effects of propranolol on the transmembrane potentials of ventricular muscle and Purkinje fibers of the dog. Circ Res. 1968 May;22(5):661–677. doi: 10.1161/01.res.22.5.661. [DOI] [PubMed] [Google Scholar]
  3. Entman M. L., Levey G. S., Epstein S. E. Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3',5'-AMP. Circ Res. 1969 Oct;25(4):429–438. doi: 10.1161/01.res.25.4.429. [DOI] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B. The effect of calcium on the myelinated nerve fibre. J Physiol. 1957 Jul 11;137(2):245–260. doi: 10.1113/jphysiol.1957.sp005809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilbert D. L., Ehrenstein G. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J. 1969 Mar;9(3):447–463. doi: 10.1016/S0006-3495(69)86396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HARDMAN H. F. Molecular form of theophylline responsible for positive inotropic activity. Circ Res. 1962 Apr;10:598–607. doi: 10.1161/01.res.10.4.598. [DOI] [PubMed] [Google Scholar]
  7. Hauswirth O., Noble D., Tsien R. W. Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science. 1968 Nov 22;162(3856):916–917. doi: 10.1126/science.162.3856.916. [DOI] [PubMed] [Google Scholar]
  8. JENERICK H. The control of membrane ionic currents by the membrane potential of muscle. J Gen Physiol. 1959 May 20;42(5):923–930. doi: 10.1085/jgp.42.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirchberger M. A., Tada M., Repke D. I., Katz A. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol. 1972 Dec;4(6):673–680. doi: 10.1016/0022-2828(72)90120-4. [DOI] [PubMed] [Google Scholar]
  10. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RALL T. W., WEST T. C. The potentiation of cardiac inotropic responses to norepinephrine by theophylline. J Pharmacol Exp Ther. 1963 Mar;139:269–274. [PubMed] [Google Scholar]
  12. Robison G. A., Butcher R. W., Oye I., Morgan H. E., Sutherland E. W. The effect of epinephrine on adenosine 3', 5'-phosphate levels in the isolated perfused rat heart. Mol Pharmacol. 1965 Sep;1(2):168–177. [PubMed] [Google Scholar]
  13. Sheppard H., Wiggan G. Analogues of 4-(3,4-dimethoxybenzyl)-2-imidazolidinone as potent inhibitors of rat erythrocyte adenosine cyclic 3',5'-phosphate phosphodiesterase. Mol Pharmacol. 1971 Jan;7(1):111–115. [PubMed] [Google Scholar]
  14. TRAUTWEIN W., SCHMIDT R. F. [On the membrane effect of adrenalin on the myocardial fiber]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:715–726. [PubMed] [Google Scholar]
  15. Tsien R. W. Control of conductance in cardiac membrane permeability. Neurosci Res Program Bull. 1973 Jun;11(3):204–210. [PubMed] [Google Scholar]
  16. Tsien R. W. Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J Gen Physiol. 1974 Sep;64(3):293–319. doi: 10.1085/jgp.64.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tsien R. W., Giles W., Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol. 1972 Dec 6;240(101):181–183. doi: 10.1038/newbio240181a0. [DOI] [PubMed] [Google Scholar]
  18. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES