Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Dec 1;64(6):691–705. doi: 10.1085/jgp.64.6.691

Force-Generating Capacity and Contractile Protein Content of Arterial Smooth Muscle

R A Murphy 1, Jeremiah T Herlihy 1, J Megerman 1
PMCID: PMC2226183  PMID: 4280433

Abstract

After correction for extracellular space (40%) determined from electron micrographs, the maximum isometric force developed by strips prepared from the media of the hog carotid artery (2.2 x 106 dyn/cm2) can be extrapolated to give a value of 3.7 x 106 dyn/cm2 for the smooth muscle component of the strip. Three independent estimates of the myosin content of the smooth muscle cells were made based on (a) exhaustive extraction and purification with estimates of preparative losses, (b) the myosin catalyzed ATPase activity of media homogenates, and (c) quantitative densitometry of the peaks containing myosin, actin, and tropomyosin after disk electrophoresis of sodium dodecyl sulfate-treated media homogenates. The results were consistent and gave a myosin content of 5–10 mg/g media, or 8–17 mg/g cell. Method (c) gave myosin:actin:tropomyosin weight ratios of 1:3.2:0.8. Although measured force developed by the smooth muscle cell exceeds that of mammalian striated muscle, the myosin content in smooth muscle is about five times lower. The actin content of smooth muscle is relatively high. The actin and myosin contents are consistent with thick and thin filament ratios observed in electron micrographs of vascular smooth muscle.

Full Text

The Full Text of this article is available as a PDF (916.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARR L., HEADINGS V. E., BOHR D. F. Potassium and the recovery of arterial smooth muscle after cold storage. J Gen Physiol. 1962 Sep;46:19–33. doi: 10.1085/jgp.46.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bois R. M. The organization of the contractile apparatus of vertebrate smooth muscle. Anat Rec. 1973 Sep;177(1):61–77. doi: 10.1002/ar.1091770107. [DOI] [PubMed] [Google Scholar]
  3. Carsten M. E. Tropomyosin from smooth muscle of the uterus. Biochemistry. 1968 Mar;7(3):960–967. doi: 10.1021/bi00843a012. [DOI] [PubMed] [Google Scholar]
  4. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  5. Dobrin P. B. Influence of initial length on length-tension relationship of vascular smooth muscle. Am J Physiol. 1973 Sep;225(3):664–670. doi: 10.1152/ajplegacy.1973.225.3.664. [DOI] [PubMed] [Google Scholar]
  6. ERIKSON H. The respiratory response to acute exercise of Eskimoes and white. Acta Physiol Scand. 1957 Nov 26;41(1):1–11. doi: 10.1111/j.1748-1716.1957.tb01505.x. [DOI] [PubMed] [Google Scholar]
  7. FANBURG B., GERGELY J. STUDIES ON ADENOSINE TRIPHOSPHATE-SUPPORTED CALCIUM ACCUMULATION BY CARDIAC SUBCELLULAR PARTICLES. J Biol Chem. 1965 Jun;240:2721–2728. [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. Natural variability in the length of thin and thick filaments in single fibres from a crab, Portunus depurator. J Cell Sci. 1970 Mar;6(2):559–592. doi: 10.1242/jcs.6.2.559. [DOI] [PubMed] [Google Scholar]
  9. HAMOIR G., LASZT L. [Tropomyosin B of bovine carotids]. Biochim Biophys Acta. 1962 May 21;59:365–375. doi: 10.1016/0006-3002(62)90186-5. [DOI] [PubMed] [Google Scholar]
  10. HEADINGS V. E., RONDELL P. A., BOHR D. F. Bound soduium in arterv wall. Am J Physiol. 1960 Nov;199:783–787. doi: 10.1152/ajplegacy.1960.199.5.783. [DOI] [PubMed] [Google Scholar]
  11. Hartshorne D. J., Mueller H. The preparation of tropomyosin and troponin from natural actomyosin. Biochim Biophys Acta. 1969 Mar;175(2):301–319. doi: 10.1016/0005-2795(69)90008-7. [DOI] [PubMed] [Google Scholar]
  12. Herlihy J. T., Murphy R. A. Force-velocity and series elastic characteristics of smooth muscle from the hog carotid artery. Circ Res. 1974 Apr;34(4):461–466. doi: 10.1161/01.res.34.4.461. [DOI] [PubMed] [Google Scholar]
  13. Herlihy J. T., Murphy R. A. Length-tension relationship of smooth muscle of the hog carotid artery. Circ Res. 1973 Sep;33(3):275–283. doi: 10.1161/01.res.33.3.275. [DOI] [PubMed] [Google Scholar]
  14. Kendrick-Jones J. The subunit structure of gizzard myosin. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):183–189. doi: 10.1098/rstb.1973.0021. [DOI] [PubMed] [Google Scholar]
  15. Kristensen B. I., Nielsen L. E. A two-filament system and interaction of heavy meromyosin (HMM) with thin filaments in smooth muscle. Z Zellforsch Mikrosk Anat. 1971;122(3):350–356. doi: 10.1007/BF00935994. [DOI] [PubMed] [Google Scholar]
  16. Marston S. B., Tregear R. T. Evidence for a complex between myosin and ADP in relaxed muscle fibres. Nat New Biol. 1972 Jan 5;235(53):23–24. doi: 10.1038/newbio235023a0. [DOI] [PubMed] [Google Scholar]
  17. Murphy R. A. Arterial actomyosin: effects of pH and temperature on solubility and ATPase activity. Am J Physiol. 1971 May;220(5):1494–1500. doi: 10.1152/ajplegacy.1971.220.5.1494. [DOI] [PubMed] [Google Scholar]
  18. NEEDHAM D. M., WILLIAMS J. M. THE PROTEINS OF THE DILUTION PRECIPITATE OBTAINED FROM SALT EXTRACTS OF PREGNANT AND NON-PREGNANT UTERUS. Biochem J. 1963 Dec;89:534–545. doi: 10.1042/bj0890534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PROSSER C. L., BURNSTOCK G., KAHN J. Conduction in smooth muscle: comparative structural properties. Am J Physiol. 1960 Sep;199:545–552. doi: 10.1152/ajplegacy.1960.199.3.545. [DOI] [PubMed] [Google Scholar]
  20. Paterson B., Strohman R. C. Myosin structure as revealed by simultaneous electrophoresis of heavy and light subunits. Biochemistry. 1970 Oct 13;9(21):4094–4105. doi: 10.1021/bi00823a010. [DOI] [PubMed] [Google Scholar]
  21. Sender P. M. Muscle fibrils: Solubilization and gel electrophoresis. FEBS Lett. 1971 Sep 15;17(1):106–110. doi: 10.1016/0014-5793(71)80575-6. [DOI] [PubMed] [Google Scholar]
  22. Somlyo A. P., Devine C. E., Somlyo A. V., Rice R. V. Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):223–229. doi: 10.1098/rstb.1973.0027. [DOI] [PubMed] [Google Scholar]
  23. Sparrow M. P., van Bockxmeer F. M. Arterial tropomyosin and a relaxing protein fraction from vascular smooth muscle. Comparison with skeletal tropomyosin and troponin. J Biochem. 1972 Nov;72(5):1075–1080. doi: 10.1093/oxfordjournals.jbchem.a129993. [DOI] [PubMed] [Google Scholar]
  24. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  25. Sreter F. A., Seidel J. C., Gergely J. Studies on myosin from red and white skeletal muscles of the rabbit. I. Adenosine triphosphatase activity. J Biol Chem. 1966 Dec 25;241(24):5772–5776. [PubMed] [Google Scholar]
  26. Tregear R. T., Squire J. M. Myosin content and filament structure in smooth and striated muscle. J Mol Biol. 1973 Jun 25;77(2):279–290. doi: 10.1016/0022-2836(73)90336-7. [DOI] [PubMed] [Google Scholar]
  27. Vierling J., Roberts J. L., Conway G., Heazlitt R. Effect on cardiac myosin of diverse methods of preparation. Biochim Biophys Acta. 1968 May 6;160(1):53–62. doi: 10.1016/0005-2795(68)90063-9. [DOI] [PubMed] [Google Scholar]
  28. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES