Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Sep 1;66(3):303–326. doi: 10.1085/jgp.66.3.303

Properties of visual cells in the lateral eye of Limulus in situ

PMCID: PMC2226207  PMID: 1159405

Abstract

Excitatory properties of visual cells in the lateral eye of Limulus, investigated by optic nerve recordings in situ, differ significantly from the properties of cells in the classical, excised eye preparation. The differences suggest the possibility that two receptor mechanisms function in the eye in situ: one mechanism encodes low light intensities and the other responds to high intensities. The two mechanisms enable each ommatidium to respond over an intensity range of approximately 10 log units. This hypothesis was tested by measuring the increment threshold and the spectral sensitivity, by studying light and dark adaptation, and by analyzing the variability of the impulse discharge. Although the results do not conclusively identify two receptor mechanisms, they indicate that a process or a part of a process that functions in the eye in situ is abolished by excising the eye or cutting off its blood supply.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams W. B. Intensity characteristics of the noctuid acoustic receptor. J Gen Physiol. 1971 Nov;58(5):562–579. doi: 10.1085/jgp.58.5.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow R. B., Jr Inhibitory fields in the Limulus lateral eye. J Gen Physiol. 1969 Sep;54(3):383–396. doi: 10.1085/jgp.54.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlow R. B., Jr, Kaplan E. Limulus lateral eye: properties of receptor units in the unexcised eye. Science. 1971 Dec 3;174(4013):1027–1029. doi: 10.1126/science.174.4013.1027. [DOI] [PubMed] [Google Scholar]
  5. Barlow R. B., Jr, Lange G. D. A nonlinearity in the inhibitory interactions in the lateral eye of limulus. J Gen Physiol. 1974 May;63(5):579–589. doi: 10.1085/jgp.63.5.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baumann F., Mauro A. Effect of hypoxia on the change in membrane conductance evoked by illumination in arthropod photoreceptors. Nat New Biol. 1973 Aug 1;244(135):146–148. doi: 10.1038/newbio244146b0. [DOI] [PubMed] [Google Scholar]
  7. Biederman-Thorson M., Thorson J. Dynamics of excitation and inhibition in the light-adapted Limulus eye in situ. J Gen Physiol. 1971 Jul;58(1):1–19. doi: 10.1085/jgp.58.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Borsellino A., Fuortes M. G., Smith T. G. Visual responses in Limulus. Cold Spring Harb Symp Quant Biol. 1965;30:429–443. doi: 10.1101/sqb.1965.030.01.042. [DOI] [PubMed] [Google Scholar]
  9. Chung S. H., Raymond S. A., Lettvin J. Y. Multiple meaning in single visual units. Brain Behav Evol. 1970;3(1):72–101. doi: 10.1159/000125464. [DOI] [PubMed] [Google Scholar]
  10. Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fahrenbach W. H. The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z Zellforsch Mikrosk Anat. 1969;93(4):451–483. doi: 10.1007/BF00338531. [DOI] [PubMed] [Google Scholar]
  12. Glantz R. M. Light adaptation in the photoreceptor of the crayfish, Procambarus clarki. Vision Res. 1968 Nov;8(11):1407–1421. doi: 10.1016/0042-6989(68)90087-4. [DOI] [PubMed] [Google Scholar]
  13. Graham C. H., Hartline H. K. THE RESPONSE OF SINGLE VISUAL SENSE CELLS TO LIGHTS OF DIFFERENT WAVE LENGTHS. J Gen Physiol. 1935 Jul 20;18(6):917–931. doi: 10.1085/jgp.18.6.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green D. G. Light adaptation in the rat retina: evidence for two receptor mechanisms. Science. 1971 Nov 5;174(4009):598–600. doi: 10.1126/science.174.4009.598. [DOI] [PubMed] [Google Scholar]
  15. HAGINS W. A., ZONANA H. V., ADAMS R. G. Local membrane current in the outer segments of squid photoreceptors. Nature. 1962 Jun 2;194:844–847. doi: 10.1038/194844a0. [DOI] [PubMed] [Google Scholar]
  16. HUBBARD R., WALD G. Visual pigment of the horseshoe crab, Limulus polyphemus. Nature. 1960 Apr 16;186:212–215. doi: 10.1038/186212b0. [DOI] [PubMed] [Google Scholar]
  17. LIPETZ L. E. Response pathways to electric stimulation in the Limulus eye. Am J Ophthalmol. 1958 Sep;46(3 Pt 2):5–19. doi: 10.1016/0002-9394(58)90051-5. [DOI] [PubMed] [Google Scholar]
  18. Lasansky A. Cell junctions in ommatidia of Limulus. J Cell Biol. 1967 May;33(2):365–383. doi: 10.1083/jcb.33.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MILLER W. H. Fine structure of some invertebrate photoreceptors. Ann N Y Acad Sci. 1959 Nov 12;74(2):204–209. doi: 10.1111/j.1749-6632.1958.tb39545.x. [DOI] [PubMed] [Google Scholar]
  21. Normann R. A., Werblin F. S. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J Gen Physiol. 1974 Jan;63(1):37–61. doi: 10.1085/jgp.63.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. RATLIFF F., HARTLINE H. K., MILLER W. H. Spatial and temporal aspects of retinal inhibitory interaction. J Opt Soc Am. 1963 Jan;53:110–120. doi: 10.1364/josa.53.000110. [DOI] [PubMed] [Google Scholar]
  23. Ratliff F., Knight B. W., Graham N. On tuning and amplification by lateral inhibition. Proc Natl Acad Sci U S A. 1969 Mar;62(3):733–740. doi: 10.1073/pnas.62.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanderson A. C., Kozak W. M., Calvert T. W. Distribution coding in the visual pathway. Biophys J. 1973 Mar;13(3):218–244. doi: 10.1016/S0006-3495(73)85982-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shapley R. Fluctuations of the impulse rate in Limulus eccentric cells. J Gen Physiol. 1971 May;57(5):539–556. doi: 10.1085/jgp.57.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WULFF V. J. Duality in the electrical response of the lateral eye of limulus polyphemus. Biol Bull. 1950 Jun;98(3):258–265. doi: 10.2307/1538674. [DOI] [PubMed] [Google Scholar]
  27. Werblin F. S. Adaptation in a vertebrate retina: intracellular recording in Necturus. J Neurophysiol. 1971 Mar;34(2):228–241. doi: 10.1152/jn.1971.34.2.228. [DOI] [PubMed] [Google Scholar]
  28. Wolbarsht M. L., Yeandle S. S. Visual processes in the Limulus eye. Annu Rev Physiol. 1967;29:513–542. doi: 10.1146/annurev.ph.29.030167.002501. [DOI] [PubMed] [Google Scholar]
  29. Wulff V. J., Mueller W. J. On the origin of the receptor potential in the lateral eye of Limulus. Vision Res. 1973 Mar;13(3):661–671. doi: 10.1016/0042-6989(73)90030-8. [DOI] [PubMed] [Google Scholar]
  30. Yeandle S. S. Some properties of the components of the Limulus ommatidial potential. Kybernetik. 1967 Mar;3(5):250–254. doi: 10.1007/BF00288555. [DOI] [PubMed] [Google Scholar]
  31. Zwislocki J. J. On intensity characteristics of sensory receptors: a generalized function. Kybernetik. 1973 Mar;12(3):169–183. doi: 10.1007/BF00289170. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES