Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1975 Dec 1;66(6):671–733. doi: 10.1085/jgp.66.6.671

Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

H Sackin, EL Boulpaep
PMCID: PMC2226230  PMID: 1104761

Abstract

Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentzel C. J., Davies M., Scott W. N., Zatzman M., Solomon A. K. Osmotic volume flow in the proximal tubule of Necturus kidney. J Gen Physiol. 1968 Apr;51(4):517–533. doi: 10.1085/jgp.51.4.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bentzel C. J., Parsa B., Hare D. K. Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies. Am J Physiol. 1969 Aug;217(2):570–580. doi: 10.1152/ajplegacy.1969.217.2.570. [DOI] [PubMed] [Google Scholar]
  3. Bentzel C. J. Proximal tubule structure-function relationships during volume expansion in necturus. Kidney Int. 1972 Dec;2(6):324–335. doi: 10.1038/ki.1972.116. [DOI] [PubMed] [Google Scholar]
  4. Berry C. A., Boulpaep E. L. Nonelectrolyte permeability of the paracellular pathway in Necturus proximal tubule. Am J Physiol. 1975 Feb;228(2):581–595. doi: 10.1152/ajplegacy.1975.228.2.581. [DOI] [PubMed] [Google Scholar]
  5. Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
  6. CURRAN P. F., MACINTOSH J. R. A model system for biological water transport. Nature. 1962 Jan 27;193:347–348. doi: 10.1038/193347a0. [DOI] [PubMed] [Google Scholar]
  7. CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DIAMOND J. M. THE MECHANISM OF ISOTONIC WATER TRANSPORT. J Gen Physiol. 1964 Sep;48:15–42. doi: 10.1085/jgp.48.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deen W. M., Robertson C. R., Brenner B. M. A model of peritubular capillary control of isotonic fluid reabsorption by the renal proximal tubule. Biophys J. 1973 Apr;13(4):340–358. doi: 10.1016/S0006-3495(73)85989-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falchuk K. H., Berliner R. W. Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Am J Physiol. 1971 May;220(5):1422–1426. doi: 10.1152/ajplegacy.1971.220.5.1422. [DOI] [PubMed] [Google Scholar]
  13. Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frömter E. The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol. 1972;8(3):259–301. doi: 10.1007/BF01868106. [DOI] [PubMed] [Google Scholar]
  15. Kedem O., Leaf A. The relation between salt and ionic transport coefficients. J Gen Physiol. 1966 Mar;49(4):655–662. doi: 10.1085/jgp.49.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Machen T. E., Erlij D., Wooding F. B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol. 1972 Aug;54(2):302–312. doi: 10.1083/jcb.54.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OGILVIE J. T., McINTOSH J. R., CURRAN P. F. Volume flow in a series-membrane system. Biochim Biophys Acta. 1963 May 21;66:441–444. [PubMed] [Google Scholar]
  18. Ott C. E., Haas J. A., Cuche J. L., Knox F. G. Effect of increased peritubule protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J Clin Invest. 1975 Mar;55(3):612–620. doi: 10.1172/JCI107969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patlak C. S., Goldstein D. A., Hoffman J. F. The flow of solute and solvent across a two-membrane system. J Theor Biol. 1963 Nov;5(3):426–442. doi: 10.1016/0022-5193(63)90088-2. [DOI] [PubMed] [Google Scholar]
  20. Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vogel G., Ulbrich M., Gärtner K. Uber den Austausch des extravasalen Plasma-Albumins (131-J-Albumin) der Niere mit dem Blut und den Abfluss von Makromolekülen (Polyvinylpyrrolidon) mit der Nierenlymphe bei normaler und durch Furosemid gehemmter tubulärer Reabsorption. Untersuchungen zur Funktion des Niereninterstitiums und der Bedeutung des tubulären Reabsorbates für die interstitielle Flüssigkeit. Pflugers Arch. 1969;305(1):47–64. doi: 10.1007/BF00586395. [DOI] [PubMed] [Google Scholar]
  23. WHEELER H. O. TRANSPORT OF ELECTROLYTES AND WATER ACROSS WALL OF RABBIT GALL BLADDER. Am J Physiol. 1963 Sep;205:427–438. doi: 10.1152/ajplegacy.1963.205.3.427. [DOI] [PubMed] [Google Scholar]
  24. WHITLOCK R. T., WHEELER H. O. COUPLED TRANSPORT OF SOLUTE AND WATER ACROSS RABBIT GALLBLADDER EPITHELIUM. J Clin Invest. 1964 Dec;43:2249–2265. doi: 10.1172/JCI105099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WHITTEMBURY G., OKEN D. E., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of Necturus kidney. IV. Dependence of H20 movement on osmotic gradients. Am J Physiol. 1959 Nov;197:1121–1127. doi: 10.1152/ajplegacy.1959.197.5.1121. [DOI] [PubMed] [Google Scholar]
  26. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature. 1960 Aug 20;187:699–701. doi: 10.1038/187699a0. [DOI] [PubMed] [Google Scholar]
  27. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wall B. J., Oschman J. L., Schmidt-Nielsen B. Fluid transport: concentration of the intercellular compartment. Science. 1970 Mar 13;167(3924):1497–1499. doi: 10.1126/science.167.3924.1497. [DOI] [PubMed] [Google Scholar]
  29. Welling L. W., Grantham J. J. Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest. 1972 May;51(5):1063–1075. doi: 10.1172/JCI106898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whittembury G., Rawlins F. A. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule. Electromicroscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch. 1971;330(4):302–309. doi: 10.1007/BF00588582. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES