Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1959 Sep;45(9):1325–1344. doi: 10.1073/pnas.45.9.1325

CONTRASTS IN THE METABOLIC STABILITY OF DIFFERENT NUCLEOTIDES IN THE RIBONUCLEIC ACIDS OF ISOLATED NUCLEI*

V G Allfrey 1, A E Mirsky 1
PMCID: PMC222721  PMID: 16590512

Full text

PDF
1325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., MIRSKY A. E., OSAWA S. Protein synthesis in isolated cell nuclei. J Gen Physiol. 1957 Jan 20;40(3):451–490. doi: 10.1085/jgp.40.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLFREY V. G., MIRSKY A. E. On the supposed contamination of thymus nuclear fractions by whole cells. Science. 1955 Jun 17;121(3155):879–880. doi: 10.1126/science.121.3155.879. [DOI] [PubMed] [Google Scholar]
  3. Allfrey V. G., Mirsky A. E. SOME ASPECTS OF RIBONUCLEIC ACID SYNTHESIS IN ISOLATED CELL NUCLEI. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):821–826. doi: 10.1073/pnas.43.9.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHN W. E. 5-Ribosyl uracil, a carbon-carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim Biophys Acta. 1959 Apr;32:569–571. doi: 10.1016/0006-3002(59)90644-4. [DOI] [PubMed] [Google Scholar]
  5. ELSON D., CHARGAFF E. Regularities in the composition of pentose nucleic acids. Nature. 1954 May 29;173(4413):1037–1038. doi: 10.1038/1731037a0. [DOI] [PubMed] [Google Scholar]
  6. FICQ A., ERRERA M. Analyse autoradiographique de l'incorporation de la phénylalanine-2-14C dans les noyaux isolés. Exp Cell Res. 1958 Feb;14(1):182–192. doi: 10.1016/0014-4827(58)90225-8. [DOI] [PubMed] [Google Scholar]
  7. FRIEDKIN M., WOOD H. I. V. Utilization of thymidine-C14 by bone marrow cells and isolated thymus nuclei. J Biol Chem. 1956 Jun;220(2):639–651. [PubMed] [Google Scholar]
  8. GALE E. F., FOLKES J. P. The assimilation of amino acids by bacteria. 20. The incorporation of labelled amino acids by disrupted staphylococcal cells. Biochem J. 1955 Apr;59(4):661–675. doi: 10.1042/bj0590661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HARRIS H., WATTS J. W. Turnover of protein in a non-multiplying animal cell. Nature. 1958 Jun 7;181(4623):1582–1584. doi: 10.1038/1811582b0. [DOI] [PubMed] [Google Scholar]
  10. HERBERT E., POTTER V. R., TAKAGI Y. Nucleotide metabolism. IV. The phosphorylation of 5'-uridine nucleotides by cell fractions from rat liver. J Biol Chem. 1955 Apr;213(2):923–940. [PubMed] [Google Scholar]
  11. HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
  12. KIRBY K. S. A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J. 1956 Nov;64(3):405–408. doi: 10.1042/bj0640405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LELOIR L. F. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys. 1951 Sep;33(2):186–190. doi: 10.1016/0003-9861(51)90096-3. [DOI] [PubMed] [Google Scholar]
  14. NISMAN B., HIRSCH M. L., MARMUR J. Etude de la synthèse des protéines par des fragments cellulaires de B. coli. I. L'incorporation de la valine C14. C R Hebd Seances Acad Sci. 1955 May 9;240(19):1939–1941. [PubMed] [Google Scholar]
  15. OSAWA S., TAKATA K., HOTTA Y. Nuclear and cytoplasmic ribonucleic acids of calf thymus. Biochim Biophys Acta. 1958 May;28(2):271–277. doi: 10.1016/0006-3002(58)90473-6. [DOI] [PubMed] [Google Scholar]
  16. PELC S. R., LA COUR L. F. The incorporation of H3-thymidine in newly differentiated nuclei of roots of Vicia faba. Experientia. 1959 Apr 15;15(4):131–133. doi: 10.1007/BF02165521. [DOI] [PubMed] [Google Scholar]
  17. POTTER V. R., HECHT L. I., HERBERT E. Incorporation of pyrimidine precursors into ribonucleic acid in a cell-free fraction of rat liver homogenate. Biochim Biophys Acta. 1956 May;20(2):439–440. doi: 10.1016/0006-3002(56)90333-x. [DOI] [PubMed] [Google Scholar]
  18. RUTMAN R. J., CANTAROW A., PASCHKIS E., ALLANOFF B. Studies on uracil utilization normal and acetaminofluorene-treated rats. Science. 1953 Mar 13;117(3037):282–283. doi: 10.1126/science.117.3037.282. [DOI] [PubMed] [Google Scholar]
  19. SCHNEIDER J. H., POTTER V. R. Nucleotide metabolism. VIII. Heterogeneous labeling in ribonucleic acid of rat liver. J Biol Chem. 1958 Jul;233(1):154–158. [PubMed] [Google Scholar]
  20. STERN H., MIRSKY A. E. Soluble enzymes of nuclei isolated in sucrose and nonaqueous media; a comparative study. J Gen Physiol. 1953 Nov 20;37(2):177–187. doi: 10.1085/jgp.37.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WEBB J. M. A sensitive method for the determination of ribonucleic acid in tissues and microorganisms. J Biol Chem. 1956 Aug;221(2):635–649. [PubMed] [Google Scholar]
  22. ZALOKAR M. Nuclear origin of ribonucleic acid. Nature. 1959 May 9;183(4671):1330–1330. doi: 10.1038/1831330a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES