Abstract
This study was undertaken to elucidate the mechanism of cellular resistance to BMS-181174, a novel analogue of mitomycin C (MMC), in a human bladder cancer cell line. The BMS-181174-resistant variant (J82/BMS) was established by repeated continuous exposures of parental cells (J82) to increasing concentrations of BMS-181174 (9-40 nM) over a period of about 17 months. A 2.6-fold higher concentration of BMS-181174 was required to kill 50% of J82/BMS cell line compared with J82. The J82/BMS cell line exhibited collateral sensitivity to 5-fluorouracil (5-FU), but was significantly more cross-resistant to MMC, melphalan, taxol, doxorubicin and VP-16. NADPH cytochrome P450 reductase and DT-diaphorase activities, which have been implicated in bioreductive activation of MMC, were significantly lower in the J82/BMS cell line than in J82. The cytotoxicity of BMS-181174, however, was not affected in either cell line by pretreatment with dicoumarol, which is an inhibitor of DT-diaphorase activity. These results argue against a role of DT-diaphorase in cellular bioactivation of BMS-181174, a conclusion consistent with that of Rockwell et al (Biochem Pharmacol, 50: 1239-1243, 1995). BMS-181174-induced DNA interstrand cross-link (DNA-ISC) frequency was markedly lower in J82/BMS cell line than in J82 at every drug concentration tested. The results of the present study suggest that cellular resistance to BMS-181174 in J82/BMS cell line may be due to reduced DNA-ISC formation. However, the mechanism of relatively lower BMS-181174 induced DNA-ISC formation in J82/BMS cell line than in parental cells remains to be clarified.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Crooke S. T., Bradner W. T. Mitomycin C: a review. Cancer Treat Rev. 1976 Sep;3(3):121–139. doi: 10.1016/s0305-7372(76)80019-9. [DOI] [PubMed] [Google Scholar]
- Doll D. C., Weiss R. B., Issell B. F. Mitomycin: ten years after approval for marketing. J Clin Oncol. 1985 Feb;3(2):276–286. doi: 10.1200/JCO.1985.3.2.276. [DOI] [PubMed] [Google Scholar]
- Dorr R. T., Liddil J. D., Trent J. M., Dalton W. S. Mitomycin C resistant L1210 leukemia cells: association with pleiotropic drug resistance. Biochem Pharmacol. 1987 Oct 1;36(19):3115–3120. doi: 10.1016/0006-2952(87)90620-4. [DOI] [PubMed] [Google Scholar]
- Doyle T. W., Vyas D. M. Second generation analogs of etoposide and mitomycin C. Cancer Treat Rev. 1990 Sep;17(2-3):127–131. doi: 10.1016/0305-7372(90)90036-f. [DOI] [PubMed] [Google Scholar]
- Dusre L., Rajagopalan S., Eliot H. M., Covey J. M., Sinha B. K. DNA interstrand cross-link and free radical formation in a human multidrug-resistant cell line from mitomycin C and its analogues. Cancer Res. 1990 Feb 1;50(3):648–652. [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hoban P. R., Walton M. I., Robson C. N., Godden J., Stratford I. J., Workman P., Harris A. L., Hickson I. D. Decreased NADPH:cytochrome P-450 reductase activity and impaired drug activation in a mammalian cell line resistant to mitomycin C under aerobic but not hypoxic conditions. Cancer Res. 1990 Aug 1;50(15):4692–4697. [PubMed] [Google Scholar]
- Hrycay E. G., Jonen H. G., Levin W., Lu A. Y. Reconstitution of the reduced nicotinamide adenine dinucleotide phosphate- and reduced nicotinamide adenine dinucleotide-peroxidase activities from solubilized components of rat liver microsomes. Arch Biochem Biophys. 1975 Jan;166(1):145–151. doi: 10.1016/0003-9861(75)90374-4. [DOI] [PubMed] [Google Scholar]
- Kennedy K. A., Rockwell S., Sartorelli A. C. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 1980 Jul;40(7):2356–2360. [PubMed] [Google Scholar]
- Kobayashi E., Okabe M., Kono M., Arai H., Kasai M., Gomi K., Lee J. H., Inaba M., Tsuruo T. Comparison of uptake of mitomycin C and KW-2149 by murine P388 leukemia cells sensitive or resistant to mitomycin C. Cancer Chemother Pharmacol. 1993;32(1):20–24. doi: 10.1007/BF00685871. [DOI] [PubMed] [Google Scholar]
- Pan S. S., Akman S. A., Forrest G. L., Hipsher C., Johnson R. The role of NAD(P)H:quinone oxidoreductase in mitomycin C- and porfiromycin-resistant HCT 116 human colon-cancer cells. Cancer Chemother Pharmacol. 1992;31(1):23–31. doi: 10.1007/BF00695990. [DOI] [PubMed] [Google Scholar]
- Rockwell S., Kelley M. Interactions of BMS-181174 and radiation: studies with EMT6 cells in vitro and in solid tumors. Radiother Oncol. 1996 Apr;39(1):65–71. doi: 10.1016/0167-8140(95)01692-9. [DOI] [PubMed] [Google Scholar]
- Rockwell S., Kemple B., Kelley M. Cytotoxicity of BMS-181174. Effects of hypoxia, dicoumarol, and repair deficits. Biochem Pharmacol. 1995 Oct 12;50(8):1239–1243. doi: 10.1016/0006-2952(95)00264-z. [DOI] [PubMed] [Google Scholar]
- Rockwell S., Sartorelli A. C., Tomasz M., Kennedy K. A. Cellular pharmacology of quinone bioreductive alkylating agents. Cancer Metastasis Rev. 1993 Jun;12(2):165–176. doi: 10.1007/BF00689808. [DOI] [PubMed] [Google Scholar]
- Shibata K., Kasahara K., Bando T., Nakatsumi Y., Fujimura M., Tsuruo T., Matsuda T. Establishment and characterization of non-small cell lung cancer cell lines resistant to mitomycin C under aerobic conditions. Jpn J Cancer Res. 1995 May;86(5):460–469. doi: 10.1111/j.1349-7006.1995.tb03079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh S. V., Scalamogna D., Xia H., O'Toole S., Roy D., Emerson E. O., Gupta V., Zaren H. A. Biochemical characterization of a mitomycin C-resistant human bladder cancer cell line. Int J Cancer. 1996 Mar 15;65(6):852–857. doi: 10.1002/(SICI)1097-0215(19960315)65:6<852::AID-IJC24>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Singh S. V., Xu B. H., Gupta V., Emerson E. O., Zaren H. A., Jani J. P. Characterization of a human bladder cancer cell line selected for resistance to BMY 25067, a novel analogue of mitomycin C. Cancer Lett. 1995 Aug 16;95(1-2):49–56. doi: 10.1016/0304-3835(95)03864-s. [DOI] [PubMed] [Google Scholar]
- Willson J. K., Long B. H., Chakrabarty S., Brattain D. E., Brattain M. G. Effects of BMY 25282, a mitomycin C analogue, in mitomycin C-resistant human colon cancer cells. Cancer Res. 1985 Nov;45(11 Pt 1):5281–5286. [PubMed] [Google Scholar]
- Xu B. H., Gupta V., Singh S. V. Characterization of a human bladder cancer cell line selected for resistance to mitomycin C. Int J Cancer. 1994 Sep 1;58(5):686–692. doi: 10.1002/ijc.2910580512. [DOI] [PubMed] [Google Scholar]
- Xu B. H., Gupta V., Singh S. V. Mechanism of differential sensitivity of human bladder cancer cells to mitomycin C and its analogue. Br J Cancer. 1994 Feb;69(2):242–246. doi: 10.1038/bjc.1994.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu B. H., Singh S. V. Effect of buthionine sulfoximine and ethacrynic acid on cytotoxic activity of mitomycin C analogues BMY 25282 and BMY 25067. Cancer Res. 1992 Dec 1;52(23):6666–6670. [PubMed] [Google Scholar]
