Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(4):421–428. doi: 10.1038/bjc.1997.405

Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro.

R Skøyum 1, K Eide 1, K Berg 1, E K Rofstad 1
PMCID: PMC2227985  PMID: 9275017

Abstract

The response to treatment and the malignant progression of tumours are influenced by the ability of the tumour cells to withstand severe energy deprivation during prolonged exposure to hypoxia at normal or low extracellular pH (pHe). The objective of the present work was to demonstrate intertumour heterogeneity under conditions of microenvironment-induced energy deprivation and to investigate whether the heterogeneity can be attributed to differences in the capacity of the tumour cells to generate energy in an oxygen-deficient microenvironment. Cultures of four human melanoma cell lines (BEX-c, COX-c, SAX-c, WIX-c) were exposed to hypoxia in vitro at pHe 7.4, 7.0 or 6.6 for times up to 31 h by using the steel-chamber method. High-performance liquid chromatography was used to assess adenylate energy charge as a function of exposure time. Cellular rates of glucose uptake and lactate release were determined by using standard enzymatic test kits. The adenylate energy charge decreased with time under hypoxia in all cell lines. The decrease was most pronounced shortly after the treatment had been initiated and then tapered off. BEX-c and SAX-c showed a significantly higher adenylate energy charge under hypoxic conditions than did COX-c and WIX-c whether the pHe was 7.4, 7.0 or 6.6, showing that tumours can differ in the ability to avoid energy deprivation during microenvironmental stress. There was no correlation between the adenylate energy charge and the rates of glucose uptake and lactate release. Intertumour heterogeneity in the ability to withstand energy deprivation in an oxygen-deficient microenvironment cannot therefore be attributed mainly to differences in the capacity of the tumour cells to generate energy by anaerobic metabolism. The data presented here suggest that the heterogeneity is rather caused by differences in the capacity of the tumour cells to reduce the rate of energy consumption when exposed to hypoxia.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Born R., Hug O., Trott K. R. The effect of prolonged hypoxia on growth and viability of Chinese hamster cells. Int J Radiat Oncol Biol Phys. 1976 Jul-Aug;1(7-8):687–697. doi: 10.1016/0360-3016(76)90151-6. [DOI] [PubMed] [Google Scholar]
  2. Boyer M. J., Barnard M., Hedley D. W., Tannock I. F. Regulation of intracellular pH in subpopulations of cells derived from spheroids and solid tumours. Br J Cancer. 1993 Nov;68(5):890–897. doi: 10.1038/bjc.1993.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. M., Giaccia A. J. Tumour hypoxia: the picture has changed in the 1990s. Int J Radiat Biol. 1994 Jan;65(1):95–102. doi: 10.1080/09553009414550131. [DOI] [PubMed] [Google Scholar]
  4. Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
  5. Calderwood S. K., Bump E. A., Stevenson M. A., Van Kersen I., Hahn G. M. Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. J Cell Physiol. 1985 Aug;124(2):261–268. doi: 10.1002/jcp.1041240214. [DOI] [PubMed] [Google Scholar]
  6. Casciari J. J., Sotirchos S. V., Sutherland R. M. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol. 1992 May;151(2):386–394. doi: 10.1002/jcp.1041510220. [DOI] [PubMed] [Google Scholar]
  7. Coleman C. N. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst. 1988 May 4;80(5):310–317. doi: 10.1093/jnci/80.5.310. [DOI] [PubMed] [Google Scholar]
  8. Dachs G. U., Stratford I. J. The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy. Br J Cancer Suppl. 1996 Jul;27:S126–S132. [PMC free article] [PubMed] [Google Scholar]
  9. Durand R. E. Keynote address: the influence of microenvironmental factors on the activity of radiation and drugs. Int J Radiat Oncol Biol Phys. 1991 Feb;20(2):253–258. doi: 10.1016/0360-3016(91)90100-i. [DOI] [PubMed] [Google Scholar]
  10. Gerweck L. E., Koutcher J. A., Zaidi S. T., Seneviratne T. Energy status in the murine FSaII and MCaIV tumors under aerobic and hypoxic conditions: an in-vivo and in-vitro analysis. Int J Radiat Oncol Biol Phys. 1992;23(3):557–561. doi: 10.1016/0360-3016(92)90011-6. [DOI] [PubMed] [Google Scholar]
  11. Gerweck L. E., Seneviratne T., Gerweck K. K. Energy status and radiobiological hypoxia at specified oxygen concentrations. Radiat Res. 1993 Jul;135(1):69–74. [PubMed] [Google Scholar]
  12. Halperin M. L., Connors H. P., Relman A. S., Karnovsky M. L. Factors that control the effect of pH on glycolysis in leukocytes. J Biol Chem. 1969 Jan 25;244(2):384–390. [PubMed] [Google Scholar]
  13. Heacock C. S., Sutherland R. M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br J Cancer. 1990 Aug;62(2):217–225. doi: 10.1038/bjc.1990.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill R. P. Tumor progression: potential role of unstable genomic changes. Cancer Metastasis Rev. 1990 Sep;9(2):137–147. doi: 10.1007/BF00046340. [DOI] [PubMed] [Google Scholar]
  15. Horsman M. R. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. A review. Acta Oncol. 1995;34(5):571–587. doi: 10.3109/02841869509094031. [DOI] [PubMed] [Google Scholar]
  16. Kallinowski F., Vaupel P. pH distributions in spontaneous and isotransplanted rat tumours. Br J Cancer. 1988 Sep;58(3):314–321. doi: 10.1038/bjc.1988.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luk C. K., Veinot-Drebot L., Tjan E., Tannock I. F. Effect of transient hypoxia on sensitivity to doxorubicin in human and murine cell lines. J Natl Cancer Inst. 1990 Apr 18;82(8):684–692. doi: 10.1093/jnci/82.8.684. [DOI] [PubMed] [Google Scholar]
  18. Martin G. R., Jain R. K. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 1994 Nov 1;54(21):5670–5674. [PubMed] [Google Scholar]
  19. Pettersen E. O., Juul N. O., Rønning O. W. Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res. 1986 Sep;46(9):4346–4351. [PubMed] [Google Scholar]
  20. Rice G. C., Hoy C., Schimke R. T. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5978–5982. doi: 10.1073/pnas.83.16.5978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rice G. C., Ling V., Schimke R. T. Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (adriamycin) resistance. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9261–9264. doi: 10.1073/pnas.84.24.9261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robin E. D., Murphy B. J., Theodore J. Coordinate regulation of glycolysis by hypoxia in mammalian cells. J Cell Physiol. 1984 Mar;118(3):287–290. doi: 10.1002/jcp.1041180311. [DOI] [PubMed] [Google Scholar]
  23. Rofstad E. K., Eide K., Skøyum R., Hystad M. E., Lyng H. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids. Int J Radiat Biol. 1996 Sep;70(3):241–249. doi: 10.1080/095530096144978. [DOI] [PubMed] [Google Scholar]
  24. Rofstad E. K., Wahl A., Hystad M. E., Nesland J. M., Stokke T. Establishment in monolayer culture and characterization of four human melanoma cell lines. Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;60(3):189–197. doi: 10.1007/BF02899546. [DOI] [PubMed] [Google Scholar]
  25. Rotin D., Robinson B., Tannock I. F. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer Res. 1986 Jun;46(6):2821–2826. [PubMed] [Google Scholar]
  26. Sanna K., Rofstad E. K. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer. 1994 Jul 15;58(2):258–262. doi: 10.1002/ijc.2910580219. [DOI] [PubMed] [Google Scholar]
  27. Schlappack O. K., Zimmermann A., Hill R. P. Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer. 1991 Oct;64(4):663–670. doi: 10.1038/bjc.1991.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shrieve D. C., Deen D. F., Harris J. W. Effects of extreme hypoxia on the growth and viability of EMT6/SF mouse tumor cells in vitro. Cancer Res. 1983 Aug;43(8):3521–3527. [PubMed] [Google Scholar]
  29. Stone H. B., Brown J. M., Phillips T. L., Sutherland R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993 Dec;136(3):422–434. [PubMed] [Google Scholar]
  30. Sutherland R. M., Rasey J. S., Hill R. P. Tumor biology. Am J Clin Oncol. 1988 Jun;11(3):253–274. doi: 10.1097/00000421-198806000-00004. [DOI] [PubMed] [Google Scholar]
  31. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  32. Teicher B. A. Hypoxia and drug resistance. Cancer Metastasis Rev. 1994 Jun;13(2):139–168. doi: 10.1007/BF00689633. [DOI] [PubMed] [Google Scholar]
  33. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  34. Wike-Hooley J. L., Haveman J., Reinhold H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984 Dec;2(4):343–366. doi: 10.1016/s0167-8140(84)80077-8. [DOI] [PubMed] [Google Scholar]
  35. Wilson R. E., Keng P. C., Sutherland R. M. Changes in growth characteristics and macromolecular synthesis on recovery from severe hypoxia. Br J Cancer. 1990 Jan;61(1):14–21. doi: 10.1038/bjc.1990.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Young S. D., Hill R. P. Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst. 1990 Mar 7;82(5):371–380. doi: 10.1093/jnci/82.5.371. [DOI] [PubMed] [Google Scholar]
  37. Young S. D., Marshall R. S., Hill R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9533–9537. doi: 10.1073/pnas.85.24.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES