Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(5):606–613. doi: 10.1038/bjc.1997.433

Induction of cachexia in mice by a product isolated from the urine of cachectic cancer patients.

P Cariuk 1, M J Lorite 1, P T Todorov 1, W N Field 1, S J Wigmore 1, M J Tisdale 1
PMCID: PMC2228019  PMID: 9303359

Abstract

Urine from cancer patients with weight loss showed the presence of an antigen of M(r) 24,000 detected with a monoclonal antibody formed by fusion of splenocytes from mice with cancer cachexia. The antigen was not present in the urine of normal subjects, patients with weight loss from conditions other than cancer or from cancer patients who were weight stable or with low weight loss (1 kg month(-1)). The antigen was present in the urine from subjects with carcinomas of the pancreas, breast, lung and ovary. The antigen was purified from urine using a combination of affinity chromatography with the mouse monoclonal antibody and reversed-phase high-performance liquid chromotography (HPLC). This procedure gave a 200,000-fold purification of the protein over that in the original urine extract and the material isolated was homogeneous, as determined by silver staining of gels. The N-terminal amino acid sequence showed no homology with any of the recognized cytokines. Administration of this material to mice caused a significant (P<0.005) reduction in body weight when compared with a control group receiving material purified in the same way from the urine of a normal subject. Weight loss occurred without a reduction in food and water intake and was prevented by prior administration of the mouse monoclonal antibody. Body composition analysis showed a decrease in both fat and non-fat carcass mass without a change in water content. The effects on body composition were reversed in mice treated with the monoclonal antibody. There was a decrease in protein synthesis and an increase in degradation in skeletal muscle. Protein degradation was associated with an increased prostaglandin E2 (PGE2) release. Both protein degradation and PGE2 release were significantly reduced in mice pretreated with the monoclonal antibody. These results show that the material of M(r) 24,000 present in the urine of cachectic cancer patients is capable of producing a syndrome of cachexia in mice.

Full text

PDF
606

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkwill F., Osborne R., Burke F., Naylor S., Talbot D., Durbin H., Tavernier J., Fiers W. Evidence for tumour necrosis factor/cachectin production in cancer. Lancet. 1987 Nov 28;2(8570):1229–1232. doi: 10.1016/s0140-6736(87)91850-2. [DOI] [PubMed] [Google Scholar]
  2. Beck S. A., Tisdale M. J. Production of lipolytic and proteolytic factors by a murine tumor-producing cachexia in the host. Cancer Res. 1987 Nov 15;47(22):5919–5923. [PubMed] [Google Scholar]
  3. Belizario J. E., Katz M., Chenker E., Raw I. Bioactivity of skeletal muscle proteolysis-inducing factors in the plasma proteins from cancer patients with weight loss. Br J Cancer. 1991 May;63(5):705–710. doi: 10.1038/bjc.1991.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beutler B., Greenwald D., Hulmes J. D., Chang M., Pan Y. C., Mathison J., Ulevitch R., Cerami A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature. 1985 Aug 8;316(6028):552–554. doi: 10.1038/316552a0. [DOI] [PubMed] [Google Scholar]
  5. Black K., Garrett I. R., Mundy G. R. Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology. 1991 May;128(5):2657–2659. doi: 10.1210/endo-128-5-2657. [DOI] [PubMed] [Google Scholar]
  6. COSTA G., HOLLAND J. F. Effects of Krebs-2 carcinoma on the lipide metabolism of male Swiss mice. Cancer Res. 1962 Oct;22:1081–1083. [PubMed] [Google Scholar]
  7. Costa G. Cachexia, the metabolic component of neoplastic diseases. Cancer Res. 1977 Jul;37(7 Pt 2):2327–2335. [PubMed] [Google Scholar]
  8. Dewys W. D., Begg C., Lavin P. T., Band P. R., Bennett J. M., Bertino J. R., Cohen M. H., Douglass H. O., Jr, Engstrom P. F., Ezdinli E. Z. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med. 1980 Oct;69(4):491–497. doi: 10.1016/s0149-2918(05)80001-3. [DOI] [PubMed] [Google Scholar]
  9. Emery P. W., Edwards R. H., Rennie M. J., Souhami R. L., Halliday D. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 1984 Sep 8;289(6445):584–586. doi: 10.1136/bmj.289.6445.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gump F. E., Kinney J. M. Energy balance and weight loss in burned patients. Arch Surg. 1971 Oct;103(4):442–448. doi: 10.1001/archsurg.1971.01350100036007. [DOI] [PubMed] [Google Scholar]
  11. Heber D., Byerley L. O., Chi J., Grosvenor M., Bergman R. N., Coleman M., Chlebowski R. T. Pathophysiology of malnutrition in the adult cancer patient. Cancer. 1986 Oct 15;58(8 Suppl):1867–1873. doi: 10.1002/1097-0142(19861015)58:8+<1867::aid-cncr2820581413>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  12. Hyltander A., Drott C., Körner U., Sandström R., Lundholm K. Elevated energy expenditure in cancer patients with solid tumours. Eur J Cancer. 1991;27(1):9–15. doi: 10.1016/0277-5379(91)90050-n. [DOI] [PubMed] [Google Scholar]
  13. Ishibashi T., Shikama Y., Kimura H., Kawaguchi M., Uchida T., Yamamoto T., Okano A., Akiyama Y., Hirano T., Kishimoto T. Thrombopoietic effects of interleukin-6 in long-term administration in mice. Exp Hematol. 1993 May;21(5):640–646. [PubMed] [Google Scholar]
  14. Kien C. L., Camitta B. M. Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res. 1983 Nov;43(11):5586–5592. [PubMed] [Google Scholar]
  15. Kitada S., Hays E. F., Mead J. F. A lipid mobilizing factor in serum of tumor-bearing mice. Lipids. 1980 Mar;15(3):168–174. doi: 10.1007/BF02540964. [DOI] [PubMed] [Google Scholar]
  16. Kitada S., Hays E. F., Mead J. F. Characterization of a lipid mobilizing factor from tumors. Prog Lipid Res. 1981;20:823–826. doi: 10.1016/0163-7827(81)90155-7. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Levin L., Gevers W., Jardine L., De Guel F. J., Duncan E. J. Serum amino acids in weight-losing patients with cancer and tuberculosis. Eur J Cancer Clin Oncol. 1983 Jun;19(6):711–715. doi: 10.1016/0277-5379(83)90002-0. [DOI] [PubMed] [Google Scholar]
  19. Mahony S. M., Beck S. A., Tisdale M. J. Comparison of weight loss induced by recombinant tumour necrosis factor with that produced by a cachexia-inducing tumour. Br J Cancer. 1988 Apr;57(4):385–389. doi: 10.1038/bjc.1988.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McDevitt T. M., Tisdale M. J. Tumour-associated hypoglycaemia in a murine cachexia model. Br J Cancer. 1992 Nov;66(5):815–820. doi: 10.1038/bjc.1992.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McDevitt T. M., Todorov P. T., Beck S. A., Khan S. H., Tisdale M. J. Purification and characterization of a lipid-mobilizing factor associated with cachexia-inducing tumors in mice and humans. Cancer Res. 1995 Apr 1;55(7):1458–1463. [PubMed] [Google Scholar]
  22. Norton J. A., Moley J. F., Green M. V., Carson R. E., Morrison S. D. Parabiotic transfer of cancer anorexia/cachexia in male rats. Cancer Res. 1985 Nov;45(11 Pt 1):5547–5552. [PubMed] [Google Scholar]
  23. O'Keefe S. J., Ogden J., Ramjee G., Rund J. Contribution of elevated protein turnover and anorexia to cachexia in patients with hepatocellular carcinoma. Cancer Res. 1990 Feb 15;50(4):1226–1230. [PubMed] [Google Scholar]
  24. Oliff A., Defeo-Jones D., Boyer M., Martinez D., Kiefer D., Vuocolo G., Wolfe A., Socher S. H. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell. 1987 Aug 14;50(4):555–563. doi: 10.1016/0092-8674(87)90028-6. [DOI] [PubMed] [Google Scholar]
  25. Plumb J. A., Fearon K. C., Carter K. B., Preston T. Energy expenditure and protein synthesis rates in an animal model of cancer cachexia. Clin Nutr. 1991 Feb;10(1):23–29. doi: 10.1016/0261-5614(91)90077-p. [DOI] [PubMed] [Google Scholar]
  26. Rennie M. J., Edwards R. H., Emery P. W., Halliday D., Lundholm K., Millward D. J. Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol. 1983 Oct;3(5):387–398. doi: 10.1111/j.1475-097x.1983.tb00847.x. [DOI] [PubMed] [Google Scholar]
  27. Rodemann H. P., Goldberg A. L. Arachidonic acid, prostaglandin E2 and F2 alpha influence rates of protein turnover in skeletal and cardiac muscle. J Biol Chem. 1982 Feb 25;257(4):1632–1638. [PubMed] [Google Scholar]
  28. Saarinen U. M., Koskelo E. K., Teppo A. M., Siimes M. A. Tumor necrosis factor in children with malignancies. Cancer Res. 1990 Feb 1;50(3):592–595. [PubMed] [Google Scholar]
  29. Smith K. L., Tisdale M. J. Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer. 1993 Apr;67(4):680–685. doi: 10.1038/bjc.1993.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith K. L., Tisdale M. J. Mechanism of muscle protein degradation in cancer cachexia. Br J Cancer. 1993 Aug;68(2):314–318. doi: 10.1038/bjc.1993.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Socher S. H., Martinez D., Craig J. B., Kuhn J. G., Oliff A. Tumor necrosis factor not detectable in patients with clinical cancer cachexia. J Natl Cancer Inst. 1988 Jun 15;80(8):595–598. doi: 10.1093/jnci/80.8.595. [DOI] [PubMed] [Google Scholar]
  32. Soda K., Kawakami M., Kashii A., Miyata M. Characterization of mice bearing subclones of colon 26 adenocarcinoma disqualifies interleukin-6 as the sole inducer of cachexia. Jpn J Cancer Res. 1994 Nov;85(11):1124–1130. doi: 10.1111/j.1349-7006.1994.tb02917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strelkov A. B., Fields A. L., Baracos V. E. Effects of systemic inhibition of prostaglandin production on protein metabolism in tumor-bearing rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C261–C269. doi: 10.1152/ajpcell.1989.257.2.C261. [DOI] [PubMed] [Google Scholar]
  34. Todorov P. T., McDevitt T. M., Cariuk P., Coles B., Deacon M., Tisdale M. J. Induction of muscle protein degradation and weight loss by a tumor product. Cancer Res. 1996 Mar 15;56(6):1256–1261. [PubMed] [Google Scholar]
  35. Todorov P., Cariuk P., McDevitt T., Coles B., Fearon K., Tisdale M. Characterization of a cancer cachectic factor. Nature. 1996 Feb 22;379(6567):739–742. doi: 10.1038/379739a0. [DOI] [PubMed] [Google Scholar]
  36. WAALKES T. P., UDENFRIEND S. A fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med. 1957 Nov;50(5):733–736. [PubMed] [Google Scholar]
  37. Warnold I., Lundholm K., Scherstén T. Energy balance and body composition in cancer patients. Cancer Res. 1978 Jun;38(6):1801–1807. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES