Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(6):694–699. doi: 10.1038/bjc.1997.448

Detection of hypoxic cells in a C3H mouse mammary carcinoma using the comet assay.

P L Olive 1, M R Horsman 1, C Grau 1, J Overgaard 1
PMCID: PMC2228026  PMID: 9310232

Abstract

The comet assay was used to estimate radiobiological hypoxic fraction across a full range of tumour oxygenations in C3H mammary tumours implanted into the feet of female CDF1 mice. Tumours were either clamped before irradiation or mice were allowed to breath air, 100% oxygen, carbogen or carbon monoxide for 5-35 min before and during exposure to 15 Gy. For the alkaline comet assay, tumours were excised after irradiation and individual tumour cells were analysed for DNA single-strand breaks. Hypoxic cells were defined as those cells with approximately three times fewer single-strand breaks than aerobic cells. Radiobiological hypoxic fraction was calculated by fitting DNA damage histograms to two normal distributions, representing the response of the aerobic and hypoxic populations. The percentage of hypoxic cells estimated using the comet assay was then compared with hypoxic fraction measured using a clamped tumour control assay. Carbogen and oxygen breathing reduced the normal hypoxic fraction from 14% to 2-3% in this tumour, whereas 75-660 p.p.m. carbon monoxide progressively increased the hypoxic fraction from 18% to 82%. The slope of the line comparing the two methods was 1.23 with 95% confidence limits of 1.12-1.33 (r2 = 0.994). In the SCCVII squamous cell carcinoma growing subcutaneously in C3H mice, a similar correlation was observed between hypoxic fraction measured using the comet assay and hypoxic fraction measured in the same tumour cells using the paired survival curve assay (slope = 1.20 with 95% confidence limits of 1.03-1.37). These results confirm the ability of the comet assay to provide an accurate estimate of radiobiological hypoxic fraction over a wide range of tumour oxygenations and between two tumour types.

Full text

PDF
694

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentzen S. M., Grau C. Direct estimation of the fraction of hypoxic cells from tumour--control data obtained under aerobic and clamped conditions. Int J Radiat Biol. 1991 Jun;59(6):1435–1440. doi: 10.1080/09553009114551281. [DOI] [PubMed] [Google Scholar]
  2. Bush R. S., Jenkin R. D., Allt W. E., Beale F. A., Bean H., Dembo A. J., Pringle J. F. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl. 1978 Jun;3:302–306. [PMC free article] [PubMed] [Google Scholar]
  3. Chapman J. D., Dugle D. L., Reuvers A. P., Meeker B. E., Borsa J. Letter: Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Oct;26(4):383–389. doi: 10.1080/09553007414551361. [DOI] [PubMed] [Google Scholar]
  4. Cline J. M., Thrall D. E., Rosner G. L., Raleigh J. A. Distribution of the hypoxia marker CCI-103F in canine tumors. Int J Radiat Oncol Biol Phys. 1994 Mar 1;28(4):921–933. doi: 10.1016/0360-3016(94)90113-9. [DOI] [PubMed] [Google Scholar]
  5. Fenton B. M., Kiani M. F., Siemann D. W. Should direct measurements of tumor oxygenation relate to the radiobiological hypoxic fraction of a tumor? Int J Radiat Oncol Biol Phys. 1995 Sep 30;33(2):365–373. doi: 10.1016/0360-3016(95)00064-6. [DOI] [PubMed] [Google Scholar]
  6. Franko A. J., Koch C. J., Garrecht B. M., Sharplin J., Hughes D. Oxygen dependence of binding of misonidazole to rodent and human tumors in vitro. Cancer Res. 1987 Oct 15;47(20):5367–5376. [PubMed] [Google Scholar]
  7. GRAY L. H., CONGER A. D., EBERT M., HORNSEY S., SCOTT O. C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953 Dec;26(312):638–648. doi: 10.1259/0007-1285-26-312-638. [DOI] [PubMed] [Google Scholar]
  8. Gatenby R. A., Kessler H. B., Rosenblum J. S., Coia L. R., Moldofsky P. J., Hartz W. H., Broder G. J. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1988 May;14(5):831–838. doi: 10.1016/0360-3016(88)90002-8. [DOI] [PubMed] [Google Scholar]
  9. Gerweck L. E., Koutcher J., Zaidi S. T. Energy status parameters, hypoxia fraction and radiocurability across tumor types. Acta Oncol. 1995;34(3):335–338. doi: 10.3109/02841869509093985. [DOI] [PubMed] [Google Scholar]
  10. González González D. Hypoxia and local tumour control. Part 1. Radiother Oncol. 1991;20 (Suppl 1):5–7. doi: 10.1016/0167-8140(91)90179-k. [DOI] [PubMed] [Google Scholar]
  11. Grau C., Nordsmark M., Khalil A. A., Horsman M. R., Overgaard J. Effect of carbon monoxide breathing on hypoxia and radiation response in the SCCVII tumor in vivo. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):449–454. doi: 10.1016/0360-3016(94)90436-7. [DOI] [PubMed] [Google Scholar]
  12. Horsman M. R., Khalil A. A., Nordsmark M., Grau C., Overgaard J. Relationship between radiobiological hypoxia and direct estimates of tumour oxygenation in a mouse tumour model. Radiother Oncol. 1993 Jul;28(1):69–71. doi: 10.1016/0167-8140(93)90188-e. [DOI] [PubMed] [Google Scholar]
  13. Horsman M. R., Khalil A. A., Siemann D. W., Grau C., Hill S. A., Lynch E. M., Chaplin D. J., Overgaard J. Relationship between radiobiological hypoxia in tumors and electrode measurements of tumor oxygenation. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):439–442. doi: 10.1016/0360-3016(94)90434-0. [DOI] [PubMed] [Google Scholar]
  14. Hu Q., Kavanagh M. C., Newcombe D., Hill R. P. Detection of hypoxic fractions in murine tumors by comet assay: comparison with other techniques. Radiat Res. 1995 Dec;144(3):266–275. [PubMed] [Google Scholar]
  15. Höckel M., Knoop C., Schlenger K., Vorndran B., Baussmann E., Mitze M., Knapstein P. G., Vaupel P. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993 Jan;26(1):45–50. doi: 10.1016/0167-8140(93)90025-4. [DOI] [PubMed] [Google Scholar]
  16. Kavanagh M. C., Sun A., Hu Q., Hill R. P. Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 Histograph, [3H]misonidazole binding and paired survival assay. Radiat Res. 1996 Apr;145(4):491–500. [PubMed] [Google Scholar]
  17. Khalil A. A., Horsman M. R., Overgaard J. The importance of determining necrotic fraction when studying the effect of tumour volume on tissue oxygenation. Acta Oncol. 1995;34(3):297–300. doi: 10.3109/02841869509093978. [DOI] [PubMed] [Google Scholar]
  18. Kolstad P. Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest Suppl. 1968;106:145–157. [PubMed] [Google Scholar]
  19. Martin L. M., Thomas C. D., Guichard M. Nicotinamide and carbogen: relationship between pO2 and radiosensitivity in three tumour lines. Int J Radiat Biol. 1994 Mar;65(3):379–386. doi: 10.1080/09553009414550441. [DOI] [PubMed] [Google Scholar]
  20. Moulder J. E., Rockwell S. Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys. 1984 May;10(5):695–712. doi: 10.1016/0360-3016(84)90301-8. [DOI] [PubMed] [Google Scholar]
  21. Nordsmark M., Bentzen S. M., Overgaard J. Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol. 1994;33(4):383–389. doi: 10.3109/02841869409098433. [DOI] [PubMed] [Google Scholar]
  22. Nordsmark M., Grau C., Horsman M. R., Jörgensen H. S., Overgaard J. Relationship between tumour oxygenation, bioenergetic status and radiobiological hypoxia in an experimental model. Acta Oncol. 1995;34(3):329–334. doi: 10.3109/02841869509093984. [DOI] [PubMed] [Google Scholar]
  23. Nordsmark M., Overgaard M., Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996 Oct;41(1):31–39. doi: 10.1016/s0167-8140(96)91811-3. [DOI] [PubMed] [Google Scholar]
  24. Olive P. L., Durand R. E. Detection of hypoxic cells in a murine tumor with the use of the comet assay. J Natl Cancer Inst. 1992 May 6;84(9):707–711. doi: 10.1093/jnci/84.9.707. [DOI] [PubMed] [Google Scholar]
  25. Olive P. L., Durand R. E., Le Riche J., Olivotto I. A., Jackson S. M. Gel electrophoresis of individual cells to quantify hypoxic fraction in human breast cancers. Cancer Res. 1993 Feb 15;53(4):733–736. [PubMed] [Google Scholar]
  26. Olive P. L. Radiation-induced reoxygenation in the SCCVII murine tumour: evidence for a decrease in oxygen consumption and an increase in tumour perfusion. Radiother Oncol. 1994 Jul;32(1):37–46. doi: 10.1016/0167-8140(94)90447-2. [DOI] [PubMed] [Google Scholar]
  27. Olive P. L., Trotter T., Banáth J. P., Jackson S. M., Le Riche J. Heterogeneity in human tumour hypoxic fraction using the comet assay. Br J Cancer Suppl. 1996 Jul;27:S191–S195. [PMC free article] [PubMed] [Google Scholar]
  28. Olive P. L., Vikse C. M., Durand R. E. Hypoxic fractions measured in murine tumors and normal tissues using the comet assay. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):487–491. doi: 10.1016/0360-3016(94)90443-x. [DOI] [PubMed] [Google Scholar]
  29. Overgaard J. Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res. 1994;6(10-11):509–518. [PubMed] [Google Scholar]
  30. Overgaard J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys. 1980 Nov;6(11):1507–1517. doi: 10.1016/0360-3016(80)90008-5. [DOI] [PubMed] [Google Scholar]
  31. Rofstad E. K., DeMuth P., Fenton B. M., Sutherland R. M. 31P nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin saturation status and tumor hypoxia. Cancer Res. 1988 Oct 1;48(19):5440–5446. [PubMed] [Google Scholar]
  32. Stone H. B., Brown J. M., Phillips T. L., Sutherland R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993 Dec;136(3):422–434. [PubMed] [Google Scholar]
  33. Thomas C. D., Guichard M. Influence of melanin on pO2 measurement in vitro and in vivo. Int J Radiat Biol. 1996 Feb;69(2):205–211. doi: 10.1080/095530096146048. [DOI] [PubMed] [Google Scholar]
  34. Vaupel P., Schlenger K., Knoop C., Höckel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991 Jun 15;51(12):3316–3322. [PubMed] [Google Scholar]
  35. Zhang H., Koch C. J., Wallen C. A., Wheeler K. T. Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks. Radiat Res. 1995 May;142(2):163–168. [PubMed] [Google Scholar]
  36. Zhang H., Wheeler K. T. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells. Radiat Res. 1994 Dec;140(3):321–326. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES