Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(6):725–733. doi: 10.1038/bjc.1997.453

Methylation similarities of two CpG sites within exon 5 of human H19 between normal tissues and testicular germ cell tumours of adolescents and adults, without correlation with allelic and total level of expression.

A J Gillis 1, A J Verkerk 1, M C Dekker 1, R J van Gurp 1, J W Oosterhuis 1, L H Looijenga 1
PMCID: PMC2228033  PMID: 9310237

Abstract

Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis. Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs. To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their nonmalignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant counterparts, in spite of their consistent biallelic expression.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam G. I., Cui H., Miller S. J., Flam F., Ohlsson R. Allele-specific in situ hybridization (ASISH) analysis: a novel technique which resolves differential allelic usage of H19 within the same cell lineage during human placental development. Development. 1996 Mar;122(3):839–847. doi: 10.1242/dev.122.3.839. [DOI] [PubMed] [Google Scholar]
  2. Bartolomei M. S., Zemel S., Tilghman S. M. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. doi: 10.1038/351153a0. [DOI] [PubMed] [Google Scholar]
  3. Bergström R., Adami H. O., Möhner M., Zatonski W., Storm H., Ekbom A., Tretli S., Teppo L., Akre O., Hakulinen T. Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon. J Natl Cancer Inst. 1996 Jun 5;88(11):727–733. doi: 10.1093/jnci/88.11.727. [DOI] [PubMed] [Google Scholar]
  4. Brannan C. I., Dees E. C., Ingram R. S., Tilghman S. M. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990 Jan;10(1):28–36. doi: 10.1128/mcb.10.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunkow M. E., Tilghman S. M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 1991 Jun;5(6):1092–1101. doi: 10.1101/gad.5.6.1092. [DOI] [PubMed] [Google Scholar]
  6. Damjanov I., Horvat B., Gibas Z. Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT. Lab Invest. 1993 Feb;68(2):220–232. [PubMed] [Google Scholar]
  7. Douc-Rasy S., Barrois M., Fogel S., Ahomadegbe J. C., Stéhelin D., Coll J., Riou G. High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene. 1996 Jan 18;12(2):423–430. [PubMed] [Google Scholar]
  8. Eden S., Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994 Apr;4(2):255–259. doi: 10.1016/s0959-437x(05)80052-8. [DOI] [PubMed] [Google Scholar]
  9. Feil R., Walter J., Allen N. D., Reik W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development. 1994 Oct;120(10):2933–2943. doi: 10.1242/dev.120.10.2933. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P. Genomic imprinting and gene activation in cancer. Nat Genet. 1993 Jun;4(2):110–113. doi: 10.1038/ng0693-110. [DOI] [PubMed] [Google Scholar]
  11. Ferguson-Smith A. C., Sasaki H., Cattanach B. M., Surani M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993 Apr 22;362(6422):751–755. doi: 10.1038/362751a0. [DOI] [PubMed] [Google Scholar]
  12. Gibbs R. A., Nguyen P. N., McBride L. J., Koepf S. M., Caskey C. T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1919–1923. doi: 10.1073/pnas.86.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goshen R., Rachmilewitz J., Schneider T., de-Groot N., Ariel I., Palti Z., Hochberg A. A. The expression of the H-19 and IGF-2 genes during human embryogenesis and placental development. Mol Reprod Dev. 1993 Apr;34(4):374–379. doi: 10.1002/mrd.1080340405. [DOI] [PubMed] [Google Scholar]
  14. Hibi K., Nakamura H., Hirai A., Fujikake Y., Kasai Y., Akiyama S., Ito K., Takagi H. Loss of H19 imprinting in esophageal cancer. Cancer Res. 1996 Feb 1;56(3):480–482. [PubMed] [Google Scholar]
  15. Howlett S. K., Reik W. Methylation levels of maternal and paternal genomes during preimplantation development. Development. 1991 Sep;113(1):119–127. doi: 10.1242/dev.113.1.119. [DOI] [PubMed] [Google Scholar]
  16. Jinno Y., Ikeda Y., Yun K., Maw M., Masuzaki H., Fukuda H., Inuzuka K., Fujishita A., Ohtani Y., Okimoto T. Establishment of functional imprinting of the H19 gene in human developing placentae. Nat Genet. 1995 Jul;10(3):318–324. doi: 10.1038/ng0795-318. [DOI] [PubMed] [Google Scholar]
  17. Jørgensen N., Rajpert-De Meyts E., Graem N., Müller J., Giwercman A., Skakkebaek N. E. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells. Lab Invest. 1995 Feb;72(2):223–231. [PubMed] [Google Scholar]
  18. Kafri T., Ariel M., Brandeis M., Shemer R., Urven L., McCarrey J., Cedar H., Razin A. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992 May;6(5):705–714. doi: 10.1101/gad.6.5.705. [DOI] [PubMed] [Google Scholar]
  19. Kato M. V., Shimizu T., Nagayoshi M., Kaneko A., Sasaki M. S., Ikawa Y. Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma. Am J Hum Genet. 1996 Nov;59(5):1084–1090. [PMC free article] [PubMed] [Google Scholar]
  20. Kondo M., Suzuki H., Ueda R., Osada H., Takagi K., Takahashi T., Takahashi T. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995 Mar 16;10(6):1193–1198. [PubMed] [Google Scholar]
  21. Labosky P. A., Barlow D. P., Hogan B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development. 1994 Nov;120(11):3197–3204. doi: 10.1242/dev.120.11.3197. [DOI] [PubMed] [Google Scholar]
  22. Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., Tilghman S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995 May 4;375(6526):34–39. doi: 10.1038/375034a0. [DOI] [PubMed] [Google Scholar]
  23. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993 Nov 25;366(6453):362–365. doi: 10.1038/366362a0. [DOI] [PubMed] [Google Scholar]
  24. Li X., Adam G., Cui H., Sandstedt B., Ohlsson R., Ekström T. J. Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. Oncogene. 1995 Jul 20;11(2):221–229. [PubMed] [Google Scholar]
  25. Looijenga L. H., Abraham M., Gillis A. J., Saunders G. F., Oosterhuis J. W. Testicular germ cell tumors of adults show deletions of chromosomal bands 11p13 and 11p15.5, but no abnormalities within the zinc-finger regions and exons 2 and 6 of the Wilms' tumor 1 gene. Genes Chromosomes Cancer. 1994 Mar;9(3):153–160. doi: 10.1002/gcc.2870090302. [DOI] [PubMed] [Google Scholar]
  26. Lothe R. A., Hastie N., Heimdal K., Fosså S. D., Stenwig A. E., Børresen A. L. Frequent loss of 11p13 and 11p15 loci in male germ cell tumours. Genes Chromosomes Cancer. 1993 Jun;7(2):96–101. doi: 10.1002/gcc.2870070206. [DOI] [PubMed] [Google Scholar]
  27. Lothe R. A., Peltomäki P., Tommerup N., Fosså S. D., Stenwig A. E., Børresen A. L., Nesland J. M. Molecular genetic changes in human male germ cell tumors. Lab Invest. 1995 Nov;73(5):606–614. [PubMed] [Google Scholar]
  28. Lustig O., Ariel I., Ilan J., Lev-Lehman E., De-Groot N., Hochberg A. Expression of the imprinted gene H19 in the human fetus. Mol Reprod Dev. 1994 Jul;38(3):239–246. doi: 10.1002/mrd.1080380302. [DOI] [PubMed] [Google Scholar]
  29. Lübbert M., Salser W., Prokocimer M., Miller C. W., Thomason A., Koeffler H. P. Stable methylation patterns of MYC and other genes regulated during terminal myeloid differentiation. Leukemia. 1991 Jul;5(7):533–539. [PubMed] [Google Scholar]
  30. Mishina M., Ogawa O., Kinoshita H., Oka H., Okumura K., Mitsumori K., Kakehi Y., Reeve A. E., Yoshida O. Equivalent parental distribution of frequently lost alleles and biallelic expression of the H19 gene in human testicular germ cell tumors. Jpn J Cancer Res. 1996 Aug;87(8):816–823. doi: 10.1111/j.1349-7006.1996.tb02105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Monk M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):299–312. doi: 10.1098/rstb.1990.0013. [DOI] [PubMed] [Google Scholar]
  32. Mostofi F. K., Sesterhenn I. A., Davis C. J., Jr Immunopathology of germ cell tumors of the testis. Semin Diagn Pathol. 1987 Nov;4(4):320–341. [PubMed] [Google Scholar]
  33. Moulton T., Crenshaw T., Hao Y., Moosikasuwan J., Lin N., Dembitzer F., Hensle T., Weiss L., McMorrow L., Loew T. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994 Jul;7(3):440–447. doi: 10.1038/ng0794-440. [DOI] [PubMed] [Google Scholar]
  34. Mueller P. R., Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 1989 Nov 10;246(4931):780–786. doi: 10.1126/science.2814500. [DOI] [PubMed] [Google Scholar]
  35. Møller H., Jørgensen N., Forman D. Trends in incidence of testicular cancer in boys and adolescent men. Int J Cancer. 1995 Jun 9;61(6):761–764. doi: 10.1002/ijc.2910610604. [DOI] [PubMed] [Google Scholar]
  36. Oosterhuis J. W., Looijenga L. H. The biology of human germ cell tumours: retrospective speculations and new prospectives. Eur Urol. 1993;23(1):245–250. doi: 10.1159/000474601. [DOI] [PubMed] [Google Scholar]
  37. Peltomäki P. DNA methylation changes in human testicular cancer. Biochim Biophys Acta. 1991 Apr 15;1096(3):187–196. doi: 10.1016/0925-4439(91)90004-s. [DOI] [PubMed] [Google Scholar]
  38. Peng H. Q., Bailey D., Bronson D., Goss P. E., Hogg D. Loss of heterozygosity of tumor suppressor genes in testis cancer. Cancer Res. 1995 Jul 1;55(13):2871–2875. [PubMed] [Google Scholar]
  39. Pfeifer G. P., Steigerwald S. D., Mueller P. R., Wold B., Riggs A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989 Nov 10;246(4931):810–813. doi: 10.1126/science.2814502. [DOI] [PubMed] [Google Scholar]
  40. Rachmilewitz J., Elkin M., Looijenga L. H., Verkerk A. J., Gonik B., Lustig O., Werner D., de Groot N., Hochberg A. Characterization of the imprinted IPW gene: allelic expression in normal and tumorigenic human tissues. Oncogene. 1996 Oct 17;13(8):1687–1692. [PubMed] [Google Scholar]
  41. Rachmilewitz J., Gileadi O., Eldar-Geva T., Schneider T., de-Groot N., Hochberg A. Transcription of the H19 gene in differentiating cytotrophoblasts from human placenta. Mol Reprod Dev. 1992 Jul;32(3):196–202. doi: 10.1002/mrd.1080320303. [DOI] [PubMed] [Google Scholar]
  42. Rainier S., Dobry C. J., Feinberg A. P. Loss of imprinting in hepatoblastoma. Cancer Res. 1995 May 1;55(9):1836–1838. [PubMed] [Google Scholar]
  43. Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
  44. Razin A., Shemer R. DNA methylation in early development. Hum Mol Genet. 1995;4(Spec No):1751–1755. doi: 10.1093/hmg/4.suppl_1.1751. [DOI] [PubMed] [Google Scholar]
  45. Reik W., Allen N. D. Genomic imprinting. Imprinting with and without methylation. Curr Biol. 1994 Feb 1;4(2):145–147. doi: 10.1016/s0960-9822(94)00034-5. [DOI] [PubMed] [Google Scholar]
  46. Reik W., Brown K. W., Slatter R. E., Sartori P., Elliott M., Maher E. R. Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome. Hum Mol Genet. 1994 Aug;3(8):1297–1301. doi: 10.1093/hmg/3.8.1297. [DOI] [PubMed] [Google Scholar]
  47. Sasaki H., Ferguson-Smith A. C., Shum A. S., Barton S. C., Surani M. A. Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development. 1995 Dec;121(12):4195–4202. doi: 10.1242/dev.121.12.4195. [DOI] [PubMed] [Google Scholar]
  48. Shemer R., Kafri T., O'Connell A., Eisenberg S., Breslow J. L., Razin A. Methylation changes in the apolipoprotein AI gene during embryonic development of the mouse. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11300–11304. doi: 10.1073/pnas.88.24.11300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Skakkebaek N. E., Berthelsen J. G., Giwercman A., Müller J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl. 1987 Feb;10(1):19–28. doi: 10.1111/j.1365-2605.1987.tb00161.x. [DOI] [PubMed] [Google Scholar]
  50. Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
  51. Stöger R., Kubicka P., Liu C. G., Kafri T., Razin A., Cedar H., Barlow D. P. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993 Apr 9;73(1):61–71. doi: 10.1016/0092-8674(93)90160-r. [DOI] [PubMed] [Google Scholar]
  52. Svensson K., Walsh C., Fundele R., Ohlsson R. H19 is imprinted in the choroid plexus and leptomeninges of the mouse foetus. Mech Dev. 1995 May;51(1):31–37. doi: 10.1016/0925-4773(94)00345-n. [DOI] [PubMed] [Google Scholar]
  53. Szabó P. E., Mann J. R. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 1995 Aug 1;9(15):1857–1868. doi: 10.1101/gad.9.15.1857. [DOI] [PubMed] [Google Scholar]
  54. Szabó P., Mann J. R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development. 1994 Jun;120(6):1651–1660. doi: 10.1242/dev.120.6.1651. [DOI] [PubMed] [Google Scholar]
  55. Taniguchi T., Sullivan M. J., Ogawa O., Reeve A. E. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2159–2163. doi: 10.1073/pnas.92.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tremblay K. D., Saam J. R., Ingram R. S., Tilghman S. M., Bartolomei M. S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet. 1995 Apr;9(4):407–413. doi: 10.1038/ng0495-407. [DOI] [PubMed] [Google Scholar]
  57. Uyeno S., Aoki Y., Nata M., Sagisaka K., Kayama T., Yoshimoto T., Ono T. IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res. 1996 Dec 1;56(23):5356–5359. [PubMed] [Google Scholar]
  58. Verkerk A. J., Ariel I., Dekker M. C., Schneider T., van Gurp R. J., de Groot N., Gillis A. J., Oosterhuis J. W., Hochberg A. A., Looijenga L. H. Unique expression patterns of H19 in human testicular cancers of different etiology. Oncogene. 1997 Jan 9;14(1):95–107. doi: 10.1038/sj.onc.1200802. [DOI] [PubMed] [Google Scholar]
  59. Walsh C., Miller S. J., Flam F., Fisher R. A., Ohlsson R. Paternally derived H19 is differentially expressed in malignant and nonmalignant trophoblast. Cancer Res. 1995 Mar 1;55(5):1111–1116. [PubMed] [Google Scholar]
  60. Zhan S., Shapiro D. N., Helman L. J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest. 1994 Jul;94(1):445–448. doi: 10.1172/JCI117344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhan S., Shapiro D. N., Helman L. J. Loss of imprinting of IGF2 in Ewing's sarcoma. Oncogene. 1995 Dec 21;11(12):2503–2507. [PubMed] [Google Scholar]
  62. Zhang Y., Shields T., Crenshaw T., Hao Y., Moulton T., Tycko B. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am J Hum Genet. 1993 Jul;53(1):113–124. [PMC free article] [PubMed] [Google Scholar]
  63. van Gurp R. J., Oosterhuis J. W., Kalscheuer V., Mariman E. C., Looijenga L. H. Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst. 1994 Jul 20;86(14):1070–1075. doi: 10.1093/jnci/86.14.1070. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES