Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(6):719–724. doi: 10.1038/bjc.1997.452

Expression of the collagen-related heat shock protein HSP47 in fibroblasts treated with hyperthermia or photodynamic therapy.

A K Verrico 1, J V Moore 1
PMCID: PMC2228048  PMID: 9310236

Abstract

Heat shock protein (HSP) 47 is associated with collagen type I metabolism, both constitutively and after stress-inflicted injury. It has been claimed that, in contrast to hyperthermia (HT), photodynamic therapy (PDT) does not damage collagen, as measured at the level of tissue. We have studied HSP47 expression in normal murine skin fibroblasts (3T6) treated with hyperthermia or photodynamic therapy (PDT) mediated by three different photosensitizers: (1) haematoporphyrin ester (HpE), (2) meta tetra hydroxyphenyl chlorin (mTHPC) and (3) riboflavin (RB). Riboflavin is not an established photosensitizer for PDT and was chosen here because it is known to provoke collagen damage. The applied doses of the treatments were isoeffective in terms of 3T6 clonogenic cell survival. Analysis, at both transcriptional and translational levels, revealed HSP47 elevation after hyperthermia and after PDT with RB. PDT sensitized by HpE and mTHPC did not significantly alter HSP47 expression. These observations are consistent with our hypothesis that this collagen chaperone is up-regulated by laser-mediated modalities known to damage collagen (i.e. HT and RB PDT) but not by more conventional PDT treatments. Additionally, unexpected significant up-regulation of HSP47 was detected after illumination alone (no photosensitizer) of 3T6 cells at 653 nm laser light, but not at 630 nm.

Full text

PDF
719

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba J., Ueno N., Chakrabarti B. Mechanisms of photo-induced vitreous liquefaction. Curr Eye Res. 1994 Jul;13(7):505–512. doi: 10.3109/02713689408999882. [DOI] [PubMed] [Google Scholar]
  2. Baxter G. D., Walsh D. M., Allen J. M., Lowe A. S., Bell A. J. Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol. 1994 Mar;79(2):227–234. doi: 10.1113/expphysiol.1994.sp003755. [DOI] [PubMed] [Google Scholar]
  3. Beere H. M., Morimoto R. I., Hickman J. A. Investigations of mechanisms of drug-induced changes in gene expression: N-methylformamide-induced changes in synthesis of the M(r) 72,000 constitutive heat shock protein during commitment of HL-60 cells to granulocyte differentiation. Cancer Res. 1993 Jul 1;53(13):3034–3039. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Cambier D. C., Vanderstraeten G. G., Mussen M. J., van der Spank J. T. Low-power laser and healing of burns: a preliminary assay. Plast Reconstr Surg. 1996 Mar;97(3):555–559. doi: 10.1097/00006534-199603000-00009. [DOI] [PubMed] [Google Scholar]
  6. Cox R., Masson W. K. Letter: Changes in radiosensitivity during the in vitro growth of diploid human fibroblasts. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Aug;26(2):193–196. doi: 10.1080/09553007414551141. [DOI] [PubMed] [Google Scholar]
  7. Curry P. M., Levy J. G. Stress protein expression in murine tumor cells following photodynamic therapy with benzoporphyrin derivative. Photochem Photobiol. 1993 Sep;58(3):374–379. doi: 10.1111/j.1751-1097.1993.tb09577.x. [DOI] [PubMed] [Google Scholar]
  8. Dougherty T. J., Marcus S. L. Photodynamic therapy. Eur J Cancer. 1992;28A(10):1734–1742. doi: 10.1016/0959-8049(92)90080-l. [DOI] [PubMed] [Google Scholar]
  9. Fisher A. M., Ferrario A., Gomer C. J. Adriamycin resistance in Chinese hamster fibroblasts following oxidative stress induced by photodynamic therapy. Photochem Photobiol. 1993 Oct;58(4):581–588. doi: 10.1111/j.1751-1097.1993.tb04936.x. [DOI] [PubMed] [Google Scholar]
  10. Foote C. S. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991 Nov;54(5):659–659. doi: 10.1111/j.1751-1097.1991.tb02071.x. [DOI] [PubMed] [Google Scholar]
  11. Gomer C. J., Ferrario A., Hayashi N., Rucker N., Szirth B. C., Murphree A. L. Molecular, cellular, and tissue responses following photodynamic therapy. Lasers Surg Med. 1988;8(5):450–463. doi: 10.1002/lsm.1900080503. [DOI] [PubMed] [Google Scholar]
  12. Haylett A. K., Forbes E., MacLennan A., Truscott T. G., Moore J. V. Novel asymmetric photosensitizers: an in vitro study. Cancer Lett. 1996 Aug 2;105(2):187–193. doi: 10.1016/0304-3835(96)04279-6. [DOI] [PubMed] [Google Scholar]
  13. Juknat A. A., Kotler M. L., Batlle A. M. High delta-aminolevulinic acid uptake in rat cerebral cortex: effect on porphyrin biosynthesis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995 May;111(1):143–150. doi: 10.1016/0742-8413(94)00085-8. [DOI] [PubMed] [Google Scholar]
  14. Kakehashi A., Akiba J., Ueno N., Chakrabarti B. Evidence for singlet oxygen-induced cross-links and aggregation of collagen. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1440–1446. doi: 10.1006/bbrc.1993.2413. [DOI] [PubMed] [Google Scholar]
  15. Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994 Mar;59(3):343–349. doi: 10.1111/j.1751-1097.1994.tb05045.x. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Masuda H., Fukumoto M., Hirayoshi K., Nagata K. Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J Clin Invest. 1994 Dec;94(6):2481–2488. doi: 10.1172/JCI117617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyaishi O., Ito Y., Kozaki K., Sato T., Takechi H., Nagata K., Saga S. Age-related attenuation of HSP47 heat response in fibroblasts. Mech Ageing Dev. 1995 Jan 13;77(3):213–226. doi: 10.1016/0047-6374(94)01517-p. [DOI] [PubMed] [Google Scholar]
  19. Nagata K., Hirayoshi K., Obara M., Saga S., Yamada K. M. Biosynthesis of a novel transformation-sensitive heat-shock protein that binds to collagen. Regulation by mRNA levels and in vitro synthesis of a functional precursor. J Biol Chem. 1988 Jun 15;263(17):8344–8349. [PubMed] [Google Scholar]
  20. Nagata K., Saga S., Yamada K. M. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol. 1986 Jul;103(1):223–229. doi: 10.1083/jcb.103.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagata K., Saga S., Yamada K. M. Characterization of a novel transformation-sensitive heat-shock protein (HSP47) that binds to collagen. Biochem Biophys Res Commun. 1988 May 31;153(1):428–434. doi: 10.1016/s0006-291x(88)81242-7. [DOI] [PubMed] [Google Scholar]
  22. Nakai A., Satoh M., Hirayoshi K., Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol. 1992 May;117(4):903–914. doi: 10.1083/jcb.117.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Natsume T., Koide T., Yokota S., Hirayoshi K., Nagata K. Interactions between collagen-binding stress protein HSP47 and collagen. Analysis of kinetic parameters by surface plasmon resonance biosensor. J Biol Chem. 1994 Dec 9;269(49):31224–31228. [PubMed] [Google Scholar]
  24. Phillips D. Photodynamic therapy. Sci Prog. 1993;77(Pt 3-4):295–316. [PubMed] [Google Scholar]
  25. Sauk J. J., Van Kampen C. L., Norris K., Foster R., Somerman M. J. Expression of constitutive and inducible HSP70 and HSP47 is enhanced in cells persistently spread on OPN1 or collagen. Biochem Biophys Res Commun. 1990 Oct 15;172(1):135–142. doi: 10.1016/s0006-291x(05)80183-4. [DOI] [PubMed] [Google Scholar]
  26. Shroff B., Smith T., Norris K., Pileggi R., Sauk J. J. Hsp 47 is localized to regions of type I collagen production in developing murine femurs and molars. Connect Tissue Res. 1993;29(4):273–286. doi: 10.3109/03008209309016833. [DOI] [PubMed] [Google Scholar]
  27. Takechi H., Hirayoshi K., Nakai A., Kudo H., Saga S., Nagata K. Molecular cloning of a mouse 47-kDa heat-shock protein (HSP47), a collagen-binding stress protein, and its expression during the differentiation of F9 teratocarcinoma cells. Eur J Biochem. 1992 Jun 1;206(2):323–329. doi: 10.1111/j.1432-1033.1992.tb16930.x. [DOI] [PubMed] [Google Scholar]
  28. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol. 1991 Jun;53(6):825–835. doi: 10.1111/j.1751-1097.1991.tb09897.x. [DOI] [PubMed] [Google Scholar]
  29. Xue L. Y., Agarwal M. L., Varnes M. E. Elevation of GRP-78 and loss of HSP-70 following photodynamic treatment of V79 cells: sensitization by nigericin. Photochem Photobiol. 1995 Jul;62(1):135–143. doi: 10.1111/j.1751-1097.1995.tb05249.x. [DOI] [PubMed] [Google Scholar]
  30. van Hillegersberg R., Kort W. J., Wilson J. H. Current status of photodynamic therapy in oncology. Drugs. 1994 Oct;48(4):510–527. doi: 10.2165/00003495-199448040-00003. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES