Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(6):705–712. doi: 10.1038/bjc.1997.450

Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX.

L Wyld 1, J L Burn 1, M W Reed 1, N J Brown 1
PMCID: PMC2228050  PMID: 9310234

Abstract

Photodynamic therapy (PDT) may cause tumour cell destruction by direct toxicity or by inducing cellular hypoxia as a result of microcirculatory shutdown. Aminolaevulinic acid (ALA) causes cellular accumulation of protoporphyrin IX (PPIX) in cells exposed to it in excess. PPIX can be used as a photosensitizer for PDT. Microcirculatory shutdown may be induced by toxicity to the endothelial and vascular smooth muscle (VSM) cells or by release of vasoactive substances. We have studied whether PPIX is produced by endothelial, VSM and tumour cells on exposure to ALA and whether these cell lines are directly damaged by PDT in vitro. Tumour endothelial cells are angiogenic and we have, therefore, investigated the effect of cellular proliferation rates on PPIX generation. Tumour cells generate more PPIX intracellularly than the non-neoplastic cell lines studied and are correspondingly more sensitive to PDT-induced cytotoxicity. Endothelial cells are sensitive to PDT-induced cytotoxicity and accumulate between 1.5 and four times more PPIX when proliferating (as during tumour-induced angiogenesis) than when quiescent. We conclude that PPIX-mediated PDT may exert some of its effects on the microcirculation of treated tissues by direct toxicity to endothelial and VSM cells, and that this toxicity may be enhanced in the tumour microenvironment.

Full text

PDF
705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bermúdez Moretti M., Correa García S., Stella C., Ramos E., Batlle A. M. Delta-aminolevulinic acid transport in Saccharomyces cerevisiae. Int J Biochem. 1993 Dec;25(12):1917–1924. doi: 10.1016/0020-711x(88)90325-4. [DOI] [PubMed] [Google Scholar]
  3. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer. 1982 Jan;45(1):136–139. doi: 10.1038/bjc.1982.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FALK J. E., PORRA R. J., BROWN A., MOSS F., LARMINIE H. E. Effect of oxygen tension on haem and porphyrin biosynthesis. Nature. 1959 Oct 17;184:1217–1219. doi: 10.1038/1841217a0. [DOI] [PubMed] [Google Scholar]
  5. Fukuda H., Batlle A. M., Riley P. A. Kinetics of porphyrin accumulation in cultured epithelial cells exposed to ALA. Int J Biochem. 1993 Oct;25(10):1407–1410. doi: 10.1016/0020-711x(93)90689-c. [DOI] [PubMed] [Google Scholar]
  6. Gilissen M. J., van de Merbel-de Wit L. E., Star W. M., Koster J. F., Sluiter W. Effect of photodynamic therapy on the endothelium-dependent relaxation of isolated rat aortas. Cancer Res. 1993 Jun 1;53(11):2548–2552. [PubMed] [Google Scholar]
  7. Hanania J., Malik Z. The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett. 1992 Aug 14;65(2):127–131. doi: 10.1016/0304-3835(92)90156-p. [DOI] [PubMed] [Google Scholar]
  8. Hewett P. W., Murray J. C. Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell Dev Biol Anim. 1993 Nov;29A(11):823–830. doi: 10.1007/BF02631356. [DOI] [PubMed] [Google Scholar]
  9. Iinuma S., Farshi S. S., Ortel B., Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer. 1994 Jul;70(1):21–28. doi: 10.1038/bjc.1994.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacob G., Kurzer M. N., Fuller B. J. An assessment of tumor cell viability after in vitro freezing. Cryobiology. 1985 Oct;22(5):417–426. doi: 10.1016/0011-2240(85)90152-x. [DOI] [PubMed] [Google Scholar]
  11. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Leveckis J., Brown N. J., Reed M. W. The effect of aminolaevulinic acid-induced, protoporphyrin IX-mediated photodynamic therapy on the cremaster muscle microcirculation in vivo. Br J Cancer. 1995 Nov;72(5):1113–1119. doi: 10.1038/bjc.1995.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lim H. W., Behar S., He D. Effect of porphyrin and irradiation on heme biosynthetic pathway in endothelial cells. Photodermatol Photoimmunol Photomed. 1994 Feb;10(1):17–21. [PubMed] [Google Scholar]
  15. Lin F., Girotti A. W. Stimulatory and inhibitory effects of iron on photodynamic inactivation of leukemia cells. Photochem Photobiol. 1995 Sep;62(3):528–534. doi: 10.1111/j.1751-1097.1995.tb02379.x. [DOI] [PubMed] [Google Scholar]
  16. Lindberg R. A., Slaaf D. W., Lentsch A. B., Miller F. N. Involvement of nitric oxide and cyclooxygenase products in photoactivation-induced microvascular occlusion. Microvasc Res. 1994 Mar;47(2):203–221. doi: 10.1006/mvre.1994.1016. [DOI] [PubMed] [Google Scholar]
  17. Loh C. S., MacRobert A. J., Bedwell J., Regula J., Krasner N., Bown S. G. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993 Jul;68(1):41–51. doi: 10.1038/bjc.1993.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. VI. THE CYTIDINE DIPHOSPHATE REDUCTASE SYSTEM FROM NOVIKOFF HEPATOMA. J Biol Chem. 1964 Oct;239:3453–3456. [PubMed] [Google Scholar]
  19. Maehara Y., Sugimachi K., Akagi M., Kakegawa T., Shimazu H., Tomita M. Early postoperative chemotherapy following noncurative resection for patients with advanced gastric cancer. Br J Cancer. 1992 Mar;65(3):413–416. doi: 10.1038/bjc.1992.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchell J. B., McPherson S., DeGraff W., Gamson J., Zabell A., Russo A. Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells. Cancer Res. 1985 May;45(5):2008–2011. [PubMed] [Google Scholar]
  21. Rebeiz N., Rebeiz C. C., Arkins S., Kelley K. W., Rebeiz C. A. Photodestruction of tumor cells by induction of endogenous accumulation of protoporphyrin IX: enhancement by 1,10-phenanthroline. Photochem Photobiol. 1992 Mar;55(3):431–435. doi: 10.1111/j.1751-1097.1992.tb04258.x. [DOI] [PubMed] [Google Scholar]
  22. Reed M. W., Wieman T. J., Doak K. W., Pietsch C. G., Schuschke D. A. The microvascular effects of photodynamic therapy: evidence for a possible role of cyclooxygenase products. Photochem Photobiol. 1989 Sep;50(3):419–423. doi: 10.1111/j.1751-1097.1989.tb04179.x. [DOI] [PubMed] [Google Scholar]
  23. Reed M. W., Wieman T. J., Schuschke D. A., Tseng M. T., Miller F. N. A comparison of the effects of photodynamic therapy on normal and tumor blood vessels in the rat microcirculation. Radiat Res. 1989 Sep;119(3):542–552. [PubMed] [Google Scholar]
  24. Rittenhouse-Diakun K., Van Leengoed H., Morgan J., Hryhorenko E., Paszkiewicz G., Whitaker J. E., Oseroff A. R. The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor delta-aminolevulinic acid (ALA). Photochem Photobiol. 1995 May;61(5):523–528. doi: 10.1111/j.1751-1097.1995.tb02356.x. [DOI] [PubMed] [Google Scholar]
  25. Schick E., Kaufmann R., Rück A., Hainzl A., Boehncke W. H. Influence of activation and differentiation of cells on the effectiveness of photodynamic therapy. Acta Derm Venereol. 1995 Jul;75(4):276–279. doi: 10.2340/0001555575276279. [DOI] [PubMed] [Google Scholar]
  26. Schoenfeld N., Epstein O., Lahav M., Mamet R., Shaklai M., Atsmon A. The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Lett. 1988 Dec 1;43(1-2):43–48. doi: 10.1016/0304-3835(88)90211-x. [DOI] [PubMed] [Google Scholar]
  27. Steinbach P., Weingandt H., Baumgartner R., Kriegmair M., Hofstädter F., Knüchel R. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995 Nov;62(5):887–895. doi: 10.1111/j.1751-1097.1995.tb09152.x. [DOI] [PubMed] [Google Scholar]
  28. Stratford I. J., Stephens M. A. The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):973–976. doi: 10.1016/0360-3016(89)90898-5. [DOI] [PubMed] [Google Scholar]
  29. Van Steveninck J., Tijssen K., Boegheim J. P., Van der Zee J., Dubbelman T. M. Photodynamic generation of hydroxyl radicals by hematoporphyrin derivative and light. Photochem Photobiol. 1986 Dec;44(6):711–716. doi: 10.1111/j.1751-1097.1986.tb05528.x. [DOI] [PubMed] [Google Scholar]
  30. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  31. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  32. Yen A., Gigli I., Barrett K. E. Dual effects of protoporphyrin and long wave ultraviolet light on histamine release from rat peritoneal and cutaneous mast cells. J Immunol. 1990 Jun 1;144(11):4327–4332. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES