Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(7):878–883. doi: 10.1038/bjc.1997.478

Influence of a haematoporphyrin derivative on the protoporphyrin IX synthesis and photodynamic effect after 5-aminolaevulinic acid sensitization in human colon carcinoma cells.

H Messmann 1, M Geisler 1, U Gross 1, C Abels 1, R M Szeimies 1, P Steinbach 1, R Knüchel 1, M Doss 1, J Schölmerich 1, A Holstege 1
PMCID: PMC2228054  PMID: 9328146

Abstract

Haematoporphyrin derivatives (HPDs) are potent sensitizers in photodynamic therapy (PDT), associated with prolonged skin photosensitivity. 5-Aminolaevulinic acid (5-ALA), a natural precusor of haem, is converted intracellularly into the photosensitive agent protoporphyrin IX (PPIX), causing direct cytotoxicity after laser light irradiation but limited skin photosensitivity over 1-2 days and higher tumour selectivity. Unfortunately, the use of 5-ALA in PDT has been shown to cause only superficial tissue necrosis. Therefore, a combination of HPD and 5-ALA could be of great clinical value in the treatment of tumours if a synergistic effect of both sensitizers on tumour cell necrosis with less skin photosensitivity could be demonstrated. Human colon adenocarcinoma cells (HT-29) were cultured with either HPD or 5-ALA alone, simultaneously for 24 h with 5-ALA and HPD or in succession with 5-ALA (18 h) followed by HPD (6 h at different concentrations. Intracellular PPIX concentrations were determined by high-performance thin-layer chromatography. Furthermore, PDT was performed with an incoherent light source (lambda = 580-740 nm) using a light dose of 30 J cm(-2) and an output power of 40 mW cm(-2). The intracellular PPIX concentration correlated well with 5-ALA drug dose and incubation time and was highest after single 5-ALA sensitization. In the presence of HPD, either simultaneously or sequentially, PPIX decreased significantly. The PDT effect after simultaneous incubation with both sensitizers for 24 h was not superior to incubation with HPD alone. If 5-ALA incubation (18 h) was followed by HPD (6 h) cytotoxicity after PDT was higher than with either single drug. 5-ALA (80 microg ml(-1)) led to a decrease in tumour cell viability by 40%. A similar effect could be observed when 5-ALA and HPD were sequentially combined allowing for a reduction of the 5-ALA dose from 80 microg ml(-1) in the absence of HPD to 60 microg ml(-1) and 5 microg ml(-1) together with 0.5 microg ml(-1) and 2 microg ml(-1) HPD respectively. We speculate that the enhanced PDT effect after the combined administration of 5-ALA and HPD to cultures of colon carcinoma cells should be even more impressive in the tumour in vivo, since HPD primarily targets the tumour microvasculature and secondarily tumour cells.

Full text

PDF
878

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Creekmore S. P., Zaharko D. S. Modification of chemotherapeutic effects on L1210 cells using hematoporphyrin and light. Cancer Res. 1983 Nov;43(11):5252–5257. [PubMed] [Google Scholar]
  2. Dexter D. L., Leith J. T. Tumor heterogeneity and drug resistance. J Clin Oncol. 1986 Feb;4(2):244–257. doi: 10.1200/JCO.1986.4.2.244. [DOI] [PubMed] [Google Scholar]
  3. Dougherty T. J., Cooper M. T., Mang T. S. Cutaneous phototoxic occurrences in patients receiving Photofrin. Lasers Surg Med. 1990;10(5):485–488. doi: 10.1002/lsm.1900100514. [DOI] [PubMed] [Google Scholar]
  4. Gossner L., Sroka R., Hahn E. G., Ell C. Photodynamic therapy: successful destruction of gastrointestinal cancer after oral administration of aminolevulinic acid. Gastrointest Endosc. 1995 Jan;41(1):55–58. doi: 10.1016/s0016-5107(95)70276-8. [DOI] [PubMed] [Google Scholar]
  5. Jin M. L., Yang B. Q., Zhang W., Ren P. Combined treatment with photodynamic therapy and chemotherapy for advanced cardiac cancers. J Photochem Photobiol B. 1992 Jan;12(1):101–106. doi: 10.1016/1011-1344(92)85021-l. [DOI] [PubMed] [Google Scholar]
  6. Kennedy J. C., Pottier R. H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992 Jul 30;14(4):275–292. doi: 10.1016/1011-1344(92)85108-7. [DOI] [PubMed] [Google Scholar]
  7. Kinsey J. H., Cortese D. A., Neel H. B. Thermal considerations in murine tumor killing using hematoporphyrin derivative phototherapy. Cancer Res. 1983 Apr;43(4):1562–1567. [PubMed] [Google Scholar]
  8. Leunig A., Staub F., Peters J., Heimann A., Csapo C., Kempski O., Goetz A. E. Relation of early Photofrin uptake to photodynamically induced phototoxicity and changes of cell volume in different cell lines. Eur J Cancer. 1994;30A(1):78–83. doi: 10.1016/s0959-8049(05)80023-1. [DOI] [PubMed] [Google Scholar]
  9. Messmann H., Mlkvy P., Buonaccorsi G., Davies C. L., MacRobert A. J., Bown S. G. Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies. Br J Cancer. 1995 Sep;72(3):589–594. doi: 10.1038/bjc.1995.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  11. Nelson J. S., Liaw L. H., Lahlum R. A., Cooper P. L., Berns M. W. Use of multiple photosensitizers and wavelengths during photodynamic therapy: a new approach to enhance tumor eradication. J Natl Cancer Inst. 1990 May 16;82(10):868–873. doi: 10.1093/jnci/82.10.868. [DOI] [PubMed] [Google Scholar]
  12. Nelson J. S., Liaw L. H., Orenstein A., Roberts W. G., Berns M. W. Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst. 1988 Dec 21;80(20):1599–1605. doi: 10.1093/jnci/80.20.1599. [DOI] [PubMed] [Google Scholar]
  13. Regula J., MacRobert A. J., Gorchein A., Buonaccorsi G. A., Thorpe S. M., Spencer G. M., Hatfield A. R., Bown S. G. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX--a pilot study. Gut. 1995 Jan;36(1):67–75. doi: 10.1136/gut.36.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinbach P., Weingandt H., Baumgartner R., Kriegmair M., Hofstädter F., Knüchel R. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995 Nov;62(5):887–895. doi: 10.1111/j.1751-1097.1995.tb09152.x. [DOI] [PubMed] [Google Scholar]
  15. Szeimies R. M., Abels C., Fritsch C., Karrer S., Steinbach P., Bäumler W., Goerz G., Goetz A. E., Landthaler M. Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol. 1995 Nov;105(5):672–677. doi: 10.1111/1523-1747.ep12324377. [DOI] [PubMed] [Google Scholar]
  16. Szeimies R. M., Hein R., Bäumler W., Heine A., Landthaler M. A possible new incoherent lamp for photodynamic treatment of superficial skin lesions. Acta Derm Venereol. 1994 Mar;74(2):117–119. doi: 10.2340/0001555574117119. [DOI] [PubMed] [Google Scholar]
  17. Waldow S. M., Henderson B. W., Dougherty T. J. Potentiation of photodynamic therapy by heat: effect of sequence and time interval between treatments in vivo. Lasers Surg Med. 1985;5(2):83–94. doi: 10.1002/lsm.1900050203. [DOI] [PubMed] [Google Scholar]
  18. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  19. van Geel I. P., Oppelaar H., Oussoren Y. G., Stewart F. A. Changes in perfusion of mouse tumours after photodynamic therapy. Int J Cancer. 1994 Jan 15;56(2):224–228. doi: 10.1002/ijc.2910560214. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES