Abstract
Poly(ADP-ribose) polymerase (PADPRP), which uses NAD to synthesize ADP-ribose polymers, is activated by DNA strand breaks and mediates cellular responses to DNA damage. The consequences of low cellular NAD levels in a cell line deficient in nicotinamide mononucleotide adenylyltransferase (NMNAT), an enzyme essential for NAD biosynthesis, were investigated by assessing NAD metabolism and DNA repair after treatment with alkylating agents. A tiazofurin-resistant L1210 cell line (TZR) was isolated. NAD levels were approximately 5933 and 3375 pmol mg(-1) protein for parental (wild type, WT) and TZR cells respectively, and NMNAT levels were reduced by > 95%. TZR cells were more sensitive to temozolomide (TM) and 1-methyl-3-nitro-1-nitroso-guanidine (MNNG), particularly at concentrations that caused > 50% NAD depletion. TM and MNNG treatment decreased NAD levels in both cell lines, but took longer to return to control levels in TZR cells. For example, MNNG (5 microM), depleted NAD levels at 6 h to approximately 4512 (WT) and 1442 (TZR) pmol mg(-1) protein; however, NAD levels had returned to control levels by 8 h in WT cells, but were not restored by 16 h in TZR cells. Both cell lines were equisensitive to the growth-inhibitory effects of NU1025 per se (IC50 370 microM). Co-exposure of the cell lines to TM (100 microM) with increasing concentrations of NU1025 led to a synergistic enhancement of cytotoxicity, with IC50 values for NU1025 decreasing to 17 +/- 4 microM (TZR) and 37 +/- 6 microM (WT). A similar enhanced sensitivity to NU1025 (approximately 2.7-fold) was obtained when TZR cells were co-exposed to MNNG + NU1025. TM-induced DNA strand breaks were increased by co-incubation with NU1025, and again the TZR cell line showed increased sensitivity to NU1025. There were no significant changes in NMNAT activity in response to MNNG treatment over 24 h, either in the presence or in the absence of NU1025. These data demonstrate that modest decreases in cellular NAD levels can sensitize cells to alkylating agents and PADPRP inhibitors.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahluwalia G. S., Jayaram H. N., Plowman J. P., Cooney D. A., Johns D. G. Studies on the mechanism of action of 2-beta-D-ribofuranosylthiazole-4-carboxamide--V. Factors governing the response of murine tumors to tiazofurin. Biochem Pharmacol. 1984 Apr 15;33(8):1195–1203. doi: 10.1016/0006-2952(84)90170-9. [DOI] [PubMed] [Google Scholar]
- Althaus F. R., Höfferer L., Kleczkowska H. E., Malanga M., Naegeli H., Panzeter P., Realini C. Histone shuttle driven by the automodification cycle of poly(ADP-ribose)polymerase. Environ Mol Mutagen. 1993;22(4):278–282. doi: 10.1002/em.2850220417. [DOI] [PubMed] [Google Scholar]
- BRANSTER M. V., MORTON R. K. Comparative rates of synthesis of diphosphopyridine nucleotide by normal and tumour tissue from mouse mammary gland; studies with isolated nuclei. Biochem J. 1956 Aug;63(4):640–646. doi: 10.1042/bj0630640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balducci E., Emanuelli M., Magni G., Raffaelli N., Ruggieri S., Vita A., Natalini P. Nuclear matrix-associated NMN adenylyltransferase activity in human placenta. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1275–1279. doi: 10.1016/0006-291x(92)90211-3. [DOI] [PubMed] [Google Scholar]
- Berger N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985 Jan;101(1):4–15. [PubMed] [Google Scholar]
- Bernofsky C., Swan M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem. 1973 Jun;53(2):452–458. doi: 10.1016/0003-2697(73)90094-8. [DOI] [PubMed] [Google Scholar]
- Boulton S., Pemberton L. C., Porteous J. K., Curtin N. J., Griffin R. J., Golding B. T., Durkacz B. W. Potentiation of temozolomide-induced cytotoxicity: a comparative study of the biological effects of poly(ADP-ribose) polymerase inhibitors. Br J Cancer. 1995 Oct;72(4):849–856. doi: 10.1038/bjc.1995.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cohen A., Barankiewicz J. Metabolic consequences of DNA damage: alteration in purine metabolism following poly(ADP ribosyl)ation in human T-lymphoblasts. Arch Biochem Biophys. 1987 Nov 1;258(2):498–503. doi: 10.1016/0003-9861(87)90371-7. [DOI] [PubMed] [Google Scholar]
- Cooney D. A., Jayaram H. N., Gebeyehu G., Betts C. R., Kelley J. A., Marquez V. E., Johns D. G. The conversion of 2-beta-D-ribofuranosylthiazole-4-carboxamide to an analogue of NAD with potent IMP dehydrogenase-inhibitory properties. Biochem Pharmacol. 1982 Jun 1;31(11):2133–2136. doi: 10.1016/0006-2952(82)90436-1. [DOI] [PubMed] [Google Scholar]
- Durkacz B. W., Omidiji O., Gray D. A., Shall S. (ADP-ribose)n participates in DNA excision repair. Nature. 1980 Feb 7;283(5747):593–596. doi: 10.1038/283593a0. [DOI] [PubMed] [Google Scholar]
- Emanuelli M., Natalini P., Raffaelli N., Ruggieri S., Vita A., Magni G. NAD biosynthesis in human placenta: purification and characterization of homogeneous NMN adenylyltransferase. Arch Biochem Biophys. 1992 Oct;298(1):29–34. doi: 10.1016/0003-9861(92)90089-f. [DOI] [PubMed] [Google Scholar]
- Fornace A. J., Jr, Little J. B. DNA crosslinking induced by x-rays and chemical agents. Biochim Biophys Acta. 1977 Aug 16;477(4):343–355. doi: 10.1016/0005-2787(77)90253-2. [DOI] [PubMed] [Google Scholar]
- Fu C. S., Swendseid M. E., Jacob R. A., McKee R. W. Biochemical markers for assessment of niacin status in young men: levels of erythrocyte niacin coenzymes and plasma tryptophan. J Nutr. 1989 Dec;119(12):1949–1955. doi: 10.1093/jn/119.12.1949. [DOI] [PubMed] [Google Scholar]
- GLOCK G. E., MCLEAN P. Levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in tumours. Biochem J. 1957 Feb;65(2):413–416. doi: 10.1042/bj0650413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin R. J., Pemberton L. C., Rhodes D., Bleasdale C., Bowman K., Calvert A. H., Curtin N. J., Durkacz B. W., Newell D. R., Porteous J. K. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des. 1995 Sep;10(6):507–514. [PubMed] [Google Scholar]
- Grube K., Küpper J. H., Bürkle A. Direct stimulation of poly(ADP ribose) polymerase in permeabilized cells by double-stranded DNA oligomers. Anal Biochem. 1991 Mar 2;193(2):236–239. doi: 10.1016/0003-2697(91)90015-l. [DOI] [PubMed] [Google Scholar]
- Halldorsson H., Gray D. A., Shall S. Poly (ADP-ribose) polymerase activity in nucleotide permeable cells. FEBS Lett. 1978 Jan 15;85(2):349–352. doi: 10.1016/0014-5793(78)80489-x. [DOI] [PubMed] [Google Scholar]
- Heller B., Wang Z. Q., Wagner E. F., Radons J., Bürkle A., Fehsel K., Burkart V., Kolb H. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem. 1995 May 12;270(19):11176–11180. doi: 10.1074/jbc.270.19.11176. [DOI] [PubMed] [Google Scholar]
- JEDEIKIN L. A., WEINHOUSE S. Metabolism of neoplastic tissue. VI. Assay of oxidized and reduced diphosphopyridine nucleotide in normal and neoplastic tissues. J Biol Chem. 1955 Mar;213(1):271–280. [PubMed] [Google Scholar]
- Jayaram H. N., Cooney D. A., Glazer R. I., Dion R. L., Johns D. G. Mechanism of resistance to the oncolytic C-nucleoside 2-beta-D-ribofuranosylthiazole-4-carboxamide (NSC-286193). Biochem Pharmacol. 1982 Aug 1;31(15):2557–2560. doi: 10.1016/0006-2952(82)90071-5. [DOI] [PubMed] [Google Scholar]
- Jayaram H. N., Zhen W., Gharehbaghi K. Biochemical consequences of resistance to tiazofurin in human myelogenous leukemic K562 cells. Cancer Res. 1993 May 15;53(10 Suppl):2344–2348. [PubMed] [Google Scholar]
- Kaufmann S. H., Brunet G., Talbot B., Lamarr D., Dumas C., Shaper J. H., Poirier G. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type. Exp Cell Res. 1991 Feb;192(2):524–535. doi: 10.1016/0014-4827(91)90072-3. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
- Lautier D., Lagueux J., Thibodeau J., Ménard L., Poirier G. G. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem. 1993 May 26;122(2):171–193. doi: 10.1007/BF01076101. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Satoh M. S., Poirier G. G., Klungland A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci. 1995 Oct;20(10):405–411. doi: 10.1016/s0968-0004(00)89089-1. [DOI] [PubMed] [Google Scholar]
- Molinete M., Vermeulen W., Bürkle A., Ménissier-de Murcia J., Küpper J. H., Hoeijmakers J. H., de Murcia G. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 1993 May;12(5):2109–2117. doi: 10.1002/j.1460-2075.1993.tb05859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newlands E. S., Blackledge G. R., Slack J. A., Rustin G. J., Smith D. B., Stuart N. S., Quarterman C. P., Hoffman R., Stevens M. F., Brampton M. H. Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer. 1992 Feb;65(2):287–291. doi: 10.1038/bjc.1992.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radons J., Heller B., Bürkle A., Hartmann B., Rodriguez M. L., Kröncke K. D., Burkart V., Kolb H. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1270–1277. doi: 10.1006/bbrc.1994.1368. [DOI] [PubMed] [Google Scholar]
- Rechsteiner M., Hillyard D., Olivera B. M. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature. 1976 Feb 26;259(5545):695–696. doi: 10.1038/259695a0. [DOI] [PubMed] [Google Scholar]
- Stevens M. F., Hickman J. A., Langdon S. P., Chubb D., Vickers L., Stone R., Baig G., Goddard C., Gibson N. W., Slack J. A. Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res. 1987 Nov 15;47(22):5846–5852. [PubMed] [Google Scholar]
- Wang Z. Q., Auer B., Stingl L., Berghammer H., Haidacher D., Schweiger M., Wagner E. F. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995 Mar 1;9(5):509–520. doi: 10.1101/gad.9.5.509. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Erecińska M., Drown C., Silver I. A. Effect of oxygen tension on cellular energetics. Am J Physiol. 1977 Nov;233(5):C135–C140. doi: 10.1152/ajpcell.1977.233.5.C135. [DOI] [PubMed] [Google Scholar]
- Wright S. C., Wei Q. S., Kinder D. H., Larrick J. W. Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation. J Exp Med. 1996 Feb 1;183(2):463–471. doi: 10.1084/jem.183.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoon Y. S., Kim J. W., Kang K. W., Kim Y. S., Choi K. H., Joe C. O. Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis. J Biol Chem. 1996 Apr 12;271(15):9129–9134. doi: 10.1074/jbc.271.15.9129. [DOI] [PubMed] [Google Scholar]
- Zhang J., Dawson V. L., Dawson T. M., Snyder S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994 Feb 4;263(5147):687–689. doi: 10.1126/science.8080500. [DOI] [PubMed] [Google Scholar]
- de Murcia G., Ménissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 1994 Apr;19(4):172–176. doi: 10.1016/0968-0004(94)90280-1. [DOI] [PubMed] [Google Scholar]
