Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(10):1315–1321. doi: 10.1038/bjc.1997.554

Kinetics of mouse jejunum radiosensitization by 2',2'-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells.

V Grégoire 1, M Beauduin 1, J F Rosier 1, B De Coster 1, M Bruniaux 1, M Octave-Prignot 1, P Scalliet 1
PMCID: PMC2228152  PMID: 9374377

Abstract

Gemcitabine (dFdC), a deoxycitidine nucleoside analogue, inhibits DNA synthesis and repair of radiation-induced chromosome breaks in vitro, radiosensitizes various human and mouse cells in vitro and shows clinical activity in several tumours. Limited data are however available on the effect of dFdC on normal tissue radiotolerance and on factors associated with dFdC's radiosensitization in vivo. The purpose of this study was to determine the effect of dFdC on mouse jejunum radiosensitization and to investigate the kinetics of DNA synthesis inhibition and cell cycle redistribution in the jejunal crypts as surrogates of radiosensitization in vivo. For assessment of jejunum tolerance, the mice were irradiated on the whole body with 60Co gamma rays (3.5-18 Gy single dose) with or without prior administration of dFdC (150 mg kg-1). Jejunum tolerance was evaluated by the number of regenerated crypts per circumference at 86 h after irradiation. For pharmacodynamic studies, dFdC (150 or 600 mg kg-1) was given i.p. and jejunum was harvested at various times (0-48 h), preceded by a pulse BrdUrd labelling. Labelled cells were detected by immunohistochemistry on paraffin-embedded sections. DNA synthesis was inhibited within 3 h after dFdC administration. After an early wave of apoptosis (3-6 h), DNA synthesis recovered by 6 h, and crypt cells became synchronized. At 48 h, the labelling index returned almost to background level. At a level of 40 regenerated crypts, radiosensitization was observed for a 3 h time interval (dose modification factor of 1.3) and was associated with DNA synthesis inhibition, whereas a slight radioprotection was observed for a 48-h time interval (dose modification factor of 0.9) when DNA synthesis has reinitiated. In conclusion, dFdC altered the radioresponse of the mouse jejunum in a schedule-dependent fashion. Our data tend to support the hypothesis that DNA synthesis inhibition and cell cycle redistribution are surrogates for radiosensitization. More data points are however required before a definite conclusion can be drawn.

Full text

PDF
1315

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouffard D. Y., Momparler R. L. Comparison of the induction of apoptosis in human leukemic cell lines by 2',2'-difluorodeoxycytidine (gemcitabine) and cytosine arabinoside. Leuk Res. 1995 Nov;19(11):849–856. doi: 10.1016/0145-2126(95)00067-4. [DOI] [PubMed] [Google Scholar]
  2. Braakhuis B. J., Ruiz van Haperen V. W., Boven E., Veerman G., Peters G. J. Schedule-dependent antitumor effect of gemcitabine in in vivo model system. Semin Oncol. 1995 Aug;22(4 Suppl 11):42–46. [PubMed] [Google Scholar]
  3. Downes C. S., Collins A. R., Johnson R. T. International Workshop on inhibition of DNA repair. King's College, Cambridge, U.K., 29th June-2nd July 1982. Mutat Res. 1983 Apr;112(2):75–83. doi: 10.1016/0167-8817(83)90012-3. [DOI] [PubMed] [Google Scholar]
  4. Gruber J., Geisen F., Sgonc R., Egle A., Villunger A., Boeck G., Konwalinka G., Greil R. 2',2'-Difluorodeoxycytidine (gemcitabine) induces apoptosis in myeloma cell lines resistant to steroids and 2-chlorodeoxyadenosine (2-CdA). Stem Cells. 1996 May;14(3):351–362. doi: 10.1002/stem.140351. [DOI] [PubMed] [Google Scholar]
  5. Grégoire V., Hunter N., Brock W. A., Milas L., Plunkett W., Hittelman W. N. Fludarabine improves the therapeutic ratio of radiotherapy in mouse tumors after single-dose irradiation. Int J Radiat Oncol Biol Phys. 1994 Sep 30;30(2):363–371. doi: 10.1016/0360-3016(94)90016-7. [DOI] [PubMed] [Google Scholar]
  6. Grégoire V., Hunter N., Milas L., Brock W. A., Plunkett W., Hittelman W. N. Potentiation of radiation-induced regrowth delay in murine tumors by fludarabine. Cancer Res. 1994 Jan 15;54(2):468–474. [PubMed] [Google Scholar]
  7. Grégoire V., Van N. T., Stephens L. C., Brock W. A., Milas L., Plunkett W., Hittelman W. N. The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. Cancer Res. 1994 Dec 1;54(23):6201–6209. [PubMed] [Google Scholar]
  8. Guchelaar H. J., Richel D. J., van Knapen A. Clinical, toxicological and pharmacological aspects of gemcitabine. Cancer Treat Rev. 1996 Jan;22(1):15–31. doi: 10.1016/s0305-7372(96)90014-6. [DOI] [PubMed] [Google Scholar]
  9. Heinemann V., Xu Y. Z., Chubb S., Sen A., Hertel L. W., Grindey G. B., Plunkett W. Cellular elimination of 2',2'-difluorodeoxycytidine 5'-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992 Feb 1;52(3):533–539. [PubMed] [Google Scholar]
  10. Hertel L. W., Boder G. B., Kroin J. S., Rinzel S. M., Poore G. A., Todd G. C., Grindey G. B. Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine). Cancer Res. 1990 Jul 15;50(14):4417–4422. [PubMed] [Google Scholar]
  11. Huang P., Chubb S., Hertel L. W., Grindey G. B., Plunkett W. Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991 Nov 15;51(22):6110–6117. [PubMed] [Google Scholar]
  12. Huang P., Plunkett W. A quantitative assay for fragmented DNA in apoptotic cells. Anal Biochem. 1992 Nov 15;207(1):163–167. doi: 10.1016/0003-2697(92)90518-c. [DOI] [PubMed] [Google Scholar]
  13. Lawrence T. S., Chang E. Y., Hahn T. M., Hertel L. W., Shewach D. S. Radiosensitization of pancreatic cancer cells by 2',2'-difluoro-2'-deoxycytidine. Int J Radiat Oncol Biol Phys. 1996 Mar 1;34(4):867–872. doi: 10.1016/0360-3016(95)02134-5. [DOI] [PubMed] [Google Scholar]
  14. Milas L., Hunter N., Mason K. A., Milross C., Peters L. J. Tumor reoxygenation as a mechanism of taxol-induced enhancement of tumor radioresponse. Acta Oncol. 1995;34(3):409–412. doi: 10.3109/02841869509093999. [DOI] [PubMed] [Google Scholar]
  15. Nordsmark M., Overgaard M., Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996 Oct;41(1):31–39. doi: 10.1016/s0167-8140(96)91811-3. [DOI] [PubMed] [Google Scholar]
  16. Plunkett W., Huang P., Xu Y. Z., Heinemann V., Grunewald R., Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995 Aug;22(4 Suppl 11):3–10. [PubMed] [Google Scholar]
  17. Rockwell S., Grindey G. B. Effect of 2',2'-difluorodeoxycytidine on the viability and radiosensitivity of EMT6 cells in vitro. Oncol Res. 1992;4(4-5):151–155. [PubMed] [Google Scholar]
  18. Ruiz van Haperen V. W., Veerman G., Boven E., Noordhuis P., Vermorken J. B., Peters G. J. Schedule dependence of sensitivity to 2',2'-difluorodeoxycytidine (Gemcitabine) in relation to accumulation and retention of its triphosphate in solid tumour cell lines and solid tumours. Biochem Pharmacol. 1994 Oct 7;48(7):1327–1339. doi: 10.1016/0006-2952(94)90554-1. [DOI] [PubMed] [Google Scholar]
  19. Ruiz van Haperen V. W., Veerman G., Vermorken J. B., Peters G. J. 2',2'-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem Pharmacol. 1993 Aug 17;46(4):762–766. doi: 10.1016/0006-2952(93)90566-f. [DOI] [PubMed] [Google Scholar]
  20. Shewach D. S., Hahn T. M., Chang E., Hertel L. W., Lawrence T. S. Metabolism of 2',2'-difluoro-2'-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res. 1994 Jun 15;54(12):3218–3223. [PubMed] [Google Scholar]
  21. Shewach D. S., Lawrence T. S. Radiosensitization of human tumor cells by gemcitabine in vitro. Semin Oncol. 1995 Aug;22(4 Suppl 11):68–71. [PubMed] [Google Scholar]
  22. Weichselbaum R. R., Dahlberg W., Beckett M., Karrison T., Miller D., Clark J., Ervin T. J. Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2684–2688. doi: 10.1073/pnas.83.8.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Withers H. R., Elkind M. M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(3):261–267. doi: 10.1080/09553007014550291. [DOI] [PubMed] [Google Scholar]
  24. Withers HR. Treatment-Induced Accelerated Human Tumor Growth. Semin Radiat Oncol. 1993 Apr;3(2):135–143. doi: 10.1054/SRAO00300135. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES