Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1976 Oct 1;68(4):441–463. doi: 10.1085/jgp.68.4.441

Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum

PMCID: PMC2228441  PMID: 993767

Abstract

The relation between active transepithelial Na transport across rabbit ileum and 42K exchange from the serosal solution across the basolateral membranes has been explored. Although 42K influx across the basolateral membranes is inhibited by ouabain and by complete depletion of cell Na, it is not affected when transepithelial Na transport is abolished (i.e. in the presence of an Na-free mucosal solution) or stimulated (i.e. when glucose or alanine is added to the mucosal solution). We are unable to detect any relation between the ouabain-sensitive Na-K exchange mechanism responsible for the maintenance of intracellular Na and K concentrations and active transcellular Na transport. In addition, the maintenance of cell volume (water content) does not appear to be dependent upon transepithelial Na transport or the ouabain- sensitive Na-K exchange pump. Although the results of these studies cannot be considered conclusive, they raise serious questions regarding the role of the Na-K exchange pump, located at the basolateral membranes, in active transepithelial Na transport and the maintenance of cell volume.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. M., Musselman D. L., Reitzug H. C. Sodium, potassium, and water content of isolated bullfrog small intestinal epithelia. Am J Physiol. 1970 Oct;219(4):1023–1026. doi: 10.1152/ajplegacy.1970.219.4.1023. [DOI] [PubMed] [Google Scholar]
  2. Biber T. U., Aceves J., Mandel L. J. Potassium uptake across serosal surface of isolated frog skin epithelium. Am J Physiol. 1972 Jun;222(6):1366–1373. doi: 10.1152/ajplegacy.1972.222.6.1366. [DOI] [PubMed] [Google Scholar]
  3. Candia O. A., Zadunaisky J. A. Potassium flux and sodium transport in the isolated frog skin. Biochim Biophys Acta. 1972 Feb 11;255(2):517–529. doi: 10.1016/0005-2736(72)90155-1. [DOI] [PubMed] [Google Scholar]
  4. Charney A. N., Gots R. E., Giannella R. A. Na+-K+)-stimulated adenosinetriphosphatase in isolated intestinal villus tip and crypt cells. Biochim Biophys Acta. 1974 Nov 15;367(3):265–270. doi: 10.1016/0005-2736(74)90083-2. [DOI] [PubMed] [Google Scholar]
  5. Csáky T. Z., Esposito G. Osmotic swelling of intestinal epithelial cells during active sugar transport. Am J Physiol. 1969 Sep;217(3):753–755. doi: 10.1152/ajplegacy.1969.217.3.753. [DOI] [PubMed] [Google Scholar]
  6. Curran P. F., Cereijido M. K fluxes in frog skin. J Gen Physiol. 1965 Jul;48(6):1011–1033. doi: 10.1085/jgp.48.6.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas A. P., Kerley R., Isselbacher K. J. Preparation and characterization of the lateral and basal plasma membranes of the rat intestinal epithelial cell. Biochem J. 1972 Aug;128(5):1329–1338. doi: 10.1042/bj1281329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ernst S. A. Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):13–22. doi: 10.1177/20.1.13. [DOI] [PubMed] [Google Scholar]
  9. Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
  10. Finn A. L., Nellans H. The kinetics and distribution of potassium in the toad bladder. J Membr Biol. 1972;8(2):189–203. doi: 10.1007/BF01868102. [DOI] [PubMed] [Google Scholar]
  11. Finn A. L., Rockoff M. L. The kinetics of sodium transport in the toad bladder. I. Determination of the transport pool. J Gen Physiol. 1971 Mar;57(3):326–348. doi: 10.1085/jgp.57.3.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujita M., Ota H., Kawai K., Matsui H., Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim Biophys Acta. 1972 Aug 9;274(2):336–347. doi: 10.1016/0005-2736(72)90181-2. [DOI] [PubMed] [Google Scholar]
  14. Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
  15. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  16. Goldin S. M., Tong S. W. Reconstitution of active transport catalyzed by the purified sodium and potassium ion-stimulated adenosine triphosphatase from canine renal medulla. J Biol Chem. 1974 Sep 25;249(18):5907–5915. [PubMed] [Google Scholar]
  17. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  18. Karlish S. J., Glynn I. M. An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity. Ann N Y Acad Sci. 1974;242(0):461–470. doi: 10.1111/j.1749-6632.1974.tb19110.x. [DOI] [PubMed] [Google Scholar]
  19. Keynes R. D. From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys. 1969 Aug;2(3):177–281. doi: 10.1017/s0033583500001086. [DOI] [PubMed] [Google Scholar]
  20. Kinter W. B., Wilson T. H. AUTORADIOGRAPHIC STUDY OF SUGAR AND AMINO ACID ABSORPTION BY EVERTED SACS OF HAMSTER INTESTINE. J Cell Biol. 1965 May 1;25(2):19–39. doi: 10.1083/jcb.25.2.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koopman W., Schultz S. G. The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim Biophys Acta. 1969 Mar 11;173(2):338–340. doi: 10.1016/0005-2736(69)90116-3. [DOI] [PubMed] [Google Scholar]
  22. LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee C. O., Armstrong W. M. Activities of sodium and potassium ions in epithelial cells of small intestine. Science. 1972 Mar 17;175(4027):1261–1264. doi: 10.1126/science.175.4027.1261. [DOI] [PubMed] [Google Scholar]
  24. Macknight A. D., Civan M. M., Leaf A. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder. J Membr Biol. 1975;20(3-4):387–401. doi: 10.1007/BF01870645. [DOI] [PubMed] [Google Scholar]
  25. Macknight A. D., Civan M. M., Leaf A. The sodium transport pool in toad urinary bladder epithelial cells. J Membr Biol. 1975;20(3-4):365–367. doi: 10.1007/BF01870644. [DOI] [PubMed] [Google Scholar]
  26. Nellans H. N., Frizzell R. A., Schultz S. G. Brush-border processes and transepithelial Na and Cl transport by rabbit ileum. Am J Physiol. 1974 May;226(5):1131–1141. doi: 10.1152/ajplegacy.1974.226.5.1131. [DOI] [PubMed] [Google Scholar]
  27. Robinson B. A., Macknight A. C. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. I. Effects of different medium potassium concentrations on electrical parameters. J Membr Biol. 1976 Mar 18;26(2-3):217–238. doi: 10.1007/BF01868875. [DOI] [PubMed] [Google Scholar]
  28. Robinson B. A., Macknight A. D. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition. J Membr Biol. 1976 Mar 18;26(2-3):239–268. doi: 10.1007/BF01868876. [DOI] [PubMed] [Google Scholar]
  29. Robinson B. A., Macknight A. D. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium. J Membr Biol. 1976 Mar 18;26(2-3):269–286. doi: 10.1007/BF01868877. [DOI] [PubMed] [Google Scholar]
  30. Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  33. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  37. Trier J. S., Rubin C. E. Electron microscopy of the small intestine: a review. Gastroenterology. 1965 Nov;49(5):574–603. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES