Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1976 Nov 1;68(5):537–549. doi: 10.1085/jgp.68.5.537

Effect of verapamil and of extracellular Ca and Na on contraction frequency of cultured heart cells

PMCID: PMC2228443  PMID: 993771

Abstract

Monolayer cultures of myocardial cells were prepared by trypsin dispersion of neonatal rat ventricles. The cells were cultured for 4-5 days by which time a synchronously contracting monolayer of some 1.0 x 10(6) cells per 6-cm diam petri dish had formed. The contraction frequency and Na influx of the cells were unaffected by tetrodotoxin (2 x 10(-5) mg/ml) but both were markedly reduced by the addition of verapamil (10(-9) M to 10(-5) M). The effect of verapamil on both parameters occurred very rapidly. Although unresponsive to change in [Ca]0 between 0.3 mM and 3.0 mM, the contraction frequency of the cells declined rapidly as the [Ca]0 was reduced below 0.3 mM. On the other hand the beating rate of the cells was linearly related to [Na]0 below 40 mM the cells ceased to contract. It is therefore apparent that both [Ca]0 and [Na]0 contribute to the maintenance of the contraction frequency of cultured myocardial cells, but the latter is by far the more important. There also appeared to be, under all conditions, a close relationship between verapamilsensitive Na influx and contraction frequency. For the greater part this relationship was linear although at higher Na influx values it appeared to show evidence of saturation.

Full Text

The Full Text of this article is available as a PDF (908.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer R., Kalusche D., Kaufmann R., Mannhold R. Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. III. Effects of the optical isomers on transmembrane action potentials. Naunyn Schmiedebergs Arch Pharmacol. 1975;290(1):81–97. doi: 10.1007/BF00499991. [DOI] [PubMed] [Google Scholar]
  2. Blondel B., Roijen I., Cheneval J. P. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia. 1971 Mar 15;27(3):356–358. doi: 10.1007/BF02138197. [DOI] [PubMed] [Google Scholar]
  3. CONN H. L., Jr, WOOD J. C. Sodium exchange and distribution in the isolated heart of the normal dog. Am J Physiol. 1959 Sep;197:631–636. doi: 10.1152/ajplegacy.1959.197.3.631. [DOI] [PubMed] [Google Scholar]
  4. Cheneval J. P., Hyde A., Blondel B., Girardier L. Heart cells in culture. Metabolism, action potential and transmembrane ionic movements. J Physiol (Paris) 1972;64(5):413–430. [PubMed] [Google Scholar]
  5. DRAPER M. H., WEIDMANN S. Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol. 1951 Sep;115(1):74–94. doi: 10.1113/jphysiol.1951.sp004653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dudel J., Peper K., Rüdel R., Trautwein W. The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):213–226. doi: 10.1007/BF01844101. [DOI] [PubMed] [Google Scholar]
  7. HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res. 1963 Feb;29:451–465. doi: 10.1016/s0014-4827(63)80008-7. [DOI] [PubMed] [Google Scholar]
  8. HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. II. Intercellular communication. Exp Cell Res. 1963 Feb;29:466–474. doi: 10.1016/s0014-4827(63)80009-9. [DOI] [PubMed] [Google Scholar]
  9. Hyde A., Cheneval J. P., Blondel B., Girardier L. Electrophysiological correlates of energy metabolism in cultured rat heart cells. J Physiol (Paris) 1972;64(3):269–292. [PubMed] [Google Scholar]
  10. Imanishi S. Calcium-sensitive discharges in canine Purkinje fibers. Jpn J Physiol. 1971 Aug;21(4):443–463. doi: 10.2170/jjphysiol.21.443. [DOI] [PubMed] [Google Scholar]
  11. Jongsma H. J., van Rijn H. E. Electronic spread of current in monolayer cultures of neonatal rat heart cells. J Membr Biol. 1972;9(4):341–360. [PubMed] [Google Scholar]
  12. Kass R. S., Tsien R. W. Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol. 1975 Aug;66(2):169–192. doi: 10.1085/jgp.66.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katzung B. G. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ Res. 1975 Jul;37(1):118–127. doi: 10.1161/01.res.37.1.118. [DOI] [PubMed] [Google Scholar]
  14. Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
  15. Lamb J. F., MacKinnon M. G. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells. J Physiol. 1971 Mar;213(3):665–682. doi: 10.1113/jphysiol.1971.sp009407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamb J. F., McCall D. Effect of prolonged ouabain treatment of Na, K, Cl and Ca concentration and fluxes in cultured human cells. J Physiol. 1972 Sep;225(3):599–617. doi: 10.1113/jphysiol.1972.sp009959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mark G. E., Strasser F. F. Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp Cell Res. 1966 Nov-Dec;44(2):217–233. doi: 10.1016/0014-4827(66)90427-7. [DOI] [PubMed] [Google Scholar]
  19. McLean M. J., Shigenobu K., Sperelakis N. Two pharmacological types of cardiac slow Na+ channels as distinguished by verapamil. Eur J Pharmacol. 1974 May;26(2):379–382. doi: 10.1016/0014-2999(74)90250-7. [DOI] [PubMed] [Google Scholar]
  20. Sanborn W. G., Langer G. A. Specific uncoupling of excitation and contraction in mammalian cardiac tissue by lanthanum. J Gen Physiol. 1970 Aug;56(2):191–217. doi: 10.1085/jgp.56.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shigenobu K., Schneider J. A., Sperelakis N. Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells. J Pharmacol Exp Ther. 1974 Aug;190(2):280–288. [PubMed] [Google Scholar]
  22. Sperelakis N., Lehmkuhl D. Ionic interconversion of pacemaker and nonpacemaker cultured chick heart cells. J Gen Physiol. 1966 May;49(5):867–895. doi: 10.1085/jgp.49.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsien R. W. Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J Gen Physiol. 1974 Sep;64(3):293–319. doi: 10.1085/jgp.64.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES