Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1976 Dec 1;68(6):633–652. doi: 10.1085/jgp.68.6.633

Kinetics of bicarbonate-chloride exchange across the human red blood cell membrane

PMCID: PMC2228450  PMID: 993774

Abstract

The kinetics of bicarbonate-chloride exchange across the human red cell membrane was studied by following the time course of extracellular pH in a stopped-flow rapid-reaction apparatus during transfer of H+ into the cell by the CO2 hydration-dehydration cycle, under conditions where the rate of the process was determined by HCO3--Cl- exchange flux across the membrane. The flux of bicarbonate increased linearly with [HCO3-] gradient from 0.6 to 20 mM across the red cell membrane at both 37 degrees C and 2 degrees C, and decreased as transmembrane potential was increased by decreasing extracellular [Cl-]. An Arrhenius plot of the rate constants for the exchange indicates that the Q10 is strongly dependent on temperature, being about 1.7 between 24 degrees C and 42 degrees C and about 7 between 2 degrees C and 12 degrees C. These data agree well with the published values for Q10 of 1.2 between 24 degrees C and 40 degrees C and of 8 between 0 degrees C and 10 degrees C. The results suggest that different processes may determine the rate of HCO3- -Cl- exchange at low vs. physiological temperatures, and that the functional (and/or structural) properties of the red cell membrane vary markedly with temperature.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN O. S. The first dissociation exponent of carbonic acid as a function of pH. Scand J Clin Lab Invest. 1962;14:587–597. [PubMed] [Google Scholar]
  2. Blum R. M., Forster R. E. The water permeability of erythrocytes. Biochim Biophys Acta. 1970 Jun 2;203(3):410–423. doi: 10.1016/0005-2736(70)90181-1. [DOI] [PubMed] [Google Scholar]
  3. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  4. Crandall E. D., Klocke R. A., Forster R. E. Hydroxyl ion movements across the human erythrocyte membrane. Measurement of rapid pH changes in red cell suspensions. J Gen Physiol. 1971 Jun;57(6):664–683. doi: 10.1085/jgp.57.6.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dirken M. N., Mook H. W. The rate of gas exchange between blood cells and serum. J Physiol. 1931 Dec 17;73(4):349–360. doi: 10.1113/jphysiol.1931.sp002816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EIGEN M., HAMMES G. G. ELEMENTARY STEPS IN ENZYME REACTIONS (AS STUDIED BY RELAXATION SPECTROMETRY). Adv Enzymol Relat Areas Mol Biol. 1963;25:1–38. doi: 10.1002/9780470122709.ch1. [DOI] [PubMed] [Google Scholar]
  8. Ferguson J. K., Roughton F. J. The chemical relationships and physiological importance of carbamino compounds of CO(2) with haemoglobin. J Physiol. 1934 Dec 14;83(1):87–102. doi: 10.1113/jphysiol.1934.sp003213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferguson J. K., Roughton F. J. The direct chemical estimation of carbamino compounds of CO(2) with haemoglobin. J Physiol. 1934 Dec 14;83(1):68–86. doi: 10.1113/jphysiol.1934.sp003212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forster R. E., Constantine H. P., Craw M. R., Rotman H. H., Klocke R. A. Reaction of CO2 with human hemoglobin solution. J Biol Chem. 1968 Jun 25;243(12):3317–3326. [PubMed] [Google Scholar]
  11. Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
  12. GERLACH E., DEUTICKE B., DUHM J. PHOSPHAT-PERMEABILITAET UND PHOSPHAT-STOFFWECHSEL MENSCHLICHER ERYTHROCYTEN UND MOEGLICHKEITEN IHRER EXPERIMENTELLEN BEEINFLUSSUNG. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jul 30;280:243–274. [PubMed] [Google Scholar]
  13. Gottlieb M. H., Eanes E. D. On phase transitions in erythrocyte membranes and extracted membrane lipids. Biochim Biophys Acta. 1974 Dec 24;373(3):519–522. doi: 10.1016/0005-2736(74)90033-9. [DOI] [PubMed] [Google Scholar]
  14. Gros G., Forster R. E., Lin L. The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus. J Biol Chem. 1976 Jul 25;251(14):4398–4407. [PubMed] [Google Scholar]
  15. Gros G., Moll W. The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions. Pflugers Arch. 1971;324(3):249–266. doi: 10.1007/BF00586422. [DOI] [PubMed] [Google Scholar]
  16. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris E. J., Pressman B. C. Obligate cation exchanges in red cells. Nature. 1967 Dec 2;216(5118):918–920. doi: 10.1038/216918a0. [DOI] [PubMed] [Google Scholar]
  18. Hemingway A., Hemingway C. J., Roughton F. J. The rate of the chloride shift of respiration studied with a rapid filtration method. Respir Physiol. 1970 Jul;10(1):1–9. doi: 10.1016/0034-5687(70)90021-6. [DOI] [PubMed] [Google Scholar]
  19. Hunter M. J. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol. 1971 Oct;218 (Suppl):49P–50P. [PubMed] [Google Scholar]
  20. KERNOHAN J. C., FORREST W. W., ROUGHTON F. J. The activity of concentrated solutions of carbonic anhydrase. Biochim Biophys Acta. 1963 Jan 8;67:31–41. doi: 10.1016/0006-3002(63)91794-3. [DOI] [PubMed] [Google Scholar]
  21. LUCKNER H. Die Temperaturabhängigkeit des Anionenaustausches roter Blutkörperchen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1948;250(3):303–311. [PubMed] [Google Scholar]
  22. Lacko L., Wittke B., Geck P. The temperature dependence of the exchange transport of glucose in human erythrocytes. J Cell Physiol. 1973 Oct;82(2):213–218. doi: 10.1002/jcp.1040820209. [DOI] [PubMed] [Google Scholar]
  23. Lassen U. V., Pape L., Vestergaard-Bogind B., Bengtson O. Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membr Biol. 1974;18(2):125–144. doi: 10.1007/BF01870107. [DOI] [PubMed] [Google Scholar]
  24. Linden C. D., Wright K. L., McConnell H. M., Fox C. F. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2271–2275. doi: 10.1073/pnas.70.8.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Passow H. Passive ion permeability of the erythrocyte membrane. Prog Biophys Mol Biol. 1969;19(2):423–467. [PubMed] [Google Scholar]
  26. ROUGHTON F. J., FORSTER R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957 Sep;11(2):290–302. doi: 10.1152/jappl.1957.11.2.290. [DOI] [PubMed] [Google Scholar]
  27. Roughton F. J., Booth V. H. The effect of substrate concentration, pH and other factors upon the activity of carbonic anhydrase. Biochem J. 1946;40(2):319–330. doi: 10.1042/bj0400319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SAVITZ D., SIDEL V. W., SOLOMON A. K. OSMOTIC PROPERTIES OF HUMAN RED CELLS. J Gen Physiol. 1964 Sep;48:79–94. doi: 10.1085/jgp.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scarpa A., Cecchetto A., Azzone G. F. Permeability of erythrocytes to anions and the regulation of cell volume. Nature. 1968 Aug 3;219(5153):529–531. doi: 10.1038/219529a0. [DOI] [PubMed] [Google Scholar]
  31. Scarpa A., Cecchetto A., Azzone G. F. The mechanism of anion translocation and pH equilibration in erythrocytes. Biochim Biophys Acta. 1970;219(1):179–188. doi: 10.1016/0005-2736(70)90073-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES