Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Jul 1;70(1):99–121. doi: 10.1085/jgp.70.1.99

Ouabain-insensitive salt and water movements in duck red cells. II. The role of chloride in the volume response

WF Schmidt III, TJ McManus
PMCID: PMC2228456  PMID: 894253

Abstract

This paper describes the effect of external chloride on the typical swelling response induced in duck red cells by hypertonicity or norepinephrine. Lowering chloride inhibits swelling and produces concomitant changes in net movements of sodium and potassium in ouabain-treated cells, which resemble the effect of lowering external sodium or potassium. Inhibition is the same whether chloride is replaced with gluconate or with an osmotic equivalent of sucrose. Since changes in external chloride also cause predictable changes in cell chloride, pH, and water, these variables were systematically investigated by varying external pH along with chloride. Lowering pH to 6.60 does not abolish the response if external chloride levels are normal, although the cells are initially swollen due to the increased acidity. Cells deliberately preswollen in hypotonic solutions with appropriate ionic composition can also respond to norepinephrine by further swelling. These results rule out initial values of cell water, chloride, and pH as significant variables affecting the response. Initial values of the chloride equilibrium potential do have marked effect on the direction and rate of net water movement. If chloride is lowered by replacement with the permeant anion, acetate, E(Cl) is unchanged and a normal response to norepinephrine, which is inhibited by furosemide, is observed. Increasing internal sodium by the nystatin technique also inhibits the response. A theory is developed which depicts that the cotransport carrier proposed in the previous paper (W.F. Schmidt and T.J. McManus. 1977b. J. Gen. Physiol. 70:81-97) moves in response to the net electrochemical potential difference driving sodium and potassium across the membrane. Predictions of this theory fit the data for both cations and anions.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  2. DAVIES H. G. Structure in nucleated erythrocytes. J Biophys Biochem Cytol. 1961 Mar;9:671–687. doi: 10.1083/jcb.9.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gardner J. D., Kiino D. R., Jow N., Aurbach G. D. Effects of extracellular cations and ouabain on catecholamine-stimulated sodium and potassium fluxes in turkey erythrocytes. J Biol Chem. 1975 Feb 25;250(4):1164–1175. [PubMed] [Google Scholar]
  4. Gardner J. D., Klaeveman H. L., Bilezikian J. P., Aurbach G. D. Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes. J Biol Chem. 1973 Aug 25;248(16):5590–5597. [PubMed] [Google Scholar]
  5. Kregenow F. M. Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells. J Gen Physiol. 1974 Oct;64(4):393–412. doi: 10.1085/jgp.64.4.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kregenow F. M., Robbie D. E., Orloff J. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am J Physiol. 1976 Aug;231(2):306–311. doi: 10.1152/ajplegacy.1976.231.2.306. [DOI] [PubMed] [Google Scholar]
  7. Kregenow F. M. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):396–412. doi: 10.1085/jgp.58.4.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kregenow F. M. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media. J Gen Physiol. 1973 Apr;61(4):509–527. doi: 10.1085/jgp.61.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Poznansky M., Solomon A. K. Effect of cell volume on potassium transport in human red cells. Biochim Biophys Acta. 1972 Jul 3;274(1):111–118. doi: 10.1016/0005-2736(72)90286-6. [DOI] [PubMed] [Google Scholar]
  11. Romualdez A., Sha'afi R. I., Lange Y., Solomon A. K. Cation transport in dog red cells. J Gen Physiol. 1972 Jul;60(1):46–57. doi: 10.1085/jgp.60.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions. J Gen Physiol. 1977 Jul;70(1):59–79. doi: 10.1085/jgp.70.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol. 1977 Jul;70(1):81–97. doi: 10.1085/jgp.70.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES