Abstract
Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauge L. A., Adragna N. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J Gen Physiol. 1971 May;57(5):576–592. doi: 10.1085/jgp.57.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaugé L. A., Ortíz O. Rubidium, sodium and ouabain interactions on the influx of rubidium in rat red blood cells. J Physiol. 1970 Oct;210(3):519–532. doi: 10.1113/jphysiol.1970.sp009224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaugé L. A., Ortíz O. Sodium and rubidium fluxes in rat red blood cells. J Physiol. 1971 Nov;218(3):533–549. doi: 10.1113/jphysiol.1971.sp009632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn M. J. Ouabain-uninhibited Na+ Transport in human erythrocytes: the effects of triflocin. Biochim Biophys Acta. 1972 Feb 11;255(2):567–571. doi: 10.1016/0005-2736(72)90160-5. [DOI] [PubMed] [Google Scholar]
- Dunn M. J. Ouabain-uninhibited sodium transport in human erythrocytes. Evidence against a second pump. J Clin Invest. 1973 Mar;52(3):658–670. doi: 10.1172/JCI107227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn M. J. The effects of transport inhibitors on sodium outflux and influx in red blood cells: evidence for exchange diffusion. J Clin Invest. 1970 Oct;49(10):1804–1814. doi: 10.1172/JCI106398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Determination of sodium, potassium, and water in human red blood cells. Elimination of sources of error in the development of a flame photometric method. Scand J Clin Lab Invest. 1966;18(2):151–166. doi: 10.3109/00365516609051811. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gary-Bobo C. M., Solomon A. K. Properties of hemoglobin solutions in red cells. J Gen Physiol. 1968 Nov;52(5):825–853. doi: 10.1085/jgp.52.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. F., Kregenow F. M. The characterization of new energy dependent cation transport processes in red blood cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):566–576. doi: 10.1111/j.1749-6632.1966.tb50182.x. [DOI] [PubMed] [Google Scholar]
- IRVING L., KROG J. Body temperatures of arctic and subarctic birds and mammals. J Appl Physiol. 1954 May;6(11):667–680. doi: 10.1152/jappl.1954.6.11.667. [DOI] [PubMed] [Google Scholar]
- Kaplan J. H., Passow H. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane. J Membr Biol. 1974;19(1):179–194. doi: 10.1007/BF01869977. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):396–412. doi: 10.1085/jgp.58.4.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORSKOV S. L. Experiments on the influence of adrenaline and noradrenaline on the potassium absorption of red blood cells from pigeons and frogs. Acta Physiol Scand. 1956 Nov 5;37(4):299–306. doi: 10.1111/j.1748-1716.1956.tb01365.x. [DOI] [PubMed] [Google Scholar]
- Riddick D. H., Kregenow F. M., Orloff J. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. J Gen Physiol. 1971 Jun;57(6):752–766. doi: 10.1085/jgp.57.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Ouabain-insensitive sodium movements in the human red blood cell. J Gen Physiol. 1971 Mar;57(3):259–282. doi: 10.1085/jgp.57.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol. 1977 Jul;70(1):81–97. doi: 10.1085/jgp.70.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOSTESON D. C., ROBERTSON J. S. Potassium transport in duck red cells. J Cell Physiol. 1956 Feb;47(1):147–166. doi: 10.1002/jcp.1030470110. [DOI] [PubMed] [Google Scholar]
- Wiley J. S., Cooper R. A. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J Clin Invest. 1974 Mar;53(3):745–755. doi: 10.1172/JCI107613. [DOI] [PMC free article] [PubMed] [Google Scholar]