Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Sep 1;70(3):307–328. doi: 10.1085/jgp.70.3.307

Kinetics of Na(+) transport in necturus proximal tubule

KR Spring, G Giebisch
PMCID: PMC2228468  PMID: 894258

Abstract

The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldamus C. A., Hierholzer K., Rumrich G., Stolte H., Uhlich E., Ullrich K. J., Wiederholt M. Natriumtransport in den proximalen Tubuli und den Sammelrohren bei Variation der Natriumkonzentration im umgebenden Interstitium. Pflugers Arch. 1969;310(4):354–368. doi: 10.1007/BF00587244. [DOI] [PubMed] [Google Scholar]
  2. Bentzel C. J. Expanding drop analysis of Na and H2O flux across Necturus proximal tubule. Am J Physiol. 1974 Jan;226(1):118–126. doi: 10.1152/ajplegacy.1974.226.1.118. [DOI] [PubMed] [Google Scholar]
  3. Bentzel C. J., Spring K. R., Hare D. K., Paganelli C. V. Analog computer simulation of active and passive Na flux in Necturus proximal tubule. Am J Physiol. 1974 Jan;226(1):127–135. doi: 10.1152/ajplegacy.1974.226.1.127. [DOI] [PubMed] [Google Scholar]
  4. Biber T. U., Chez R. A., Curran P. F. Na transport across frog skin at low external Na concentrations. J Gen Physiol. 1966 Jul;49(6):1161–1176. doi: 10.1085/jgp.0491161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biber T. U., Cruz L. J. Effect of antidiuretic hormone on sodium uptake across outer surface of frog skin. Am J Physiol. 1973 Oct;225(4):912–917. doi: 10.1152/ajplegacy.1973.225.4.912. [DOI] [PubMed] [Google Scholar]
  6. Biber T. U., Curran P. F. Direct measurement of uptake of sodium at the outer surface of the frog skin. J Gen Physiol. 1970 Jul;56(1):83–99. doi: 10.1085/jgp.56.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
  8. CURRAN P. F., HERRERA F. C., FLANIGAN W. J. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanisms of action. J Gen Physiol. 1963 May;46:1011–1027. doi: 10.1085/jgp.46.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIEBISCH G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol. 1961 Mar;44:659–678. doi: 10.1085/jgp.44.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Györy A. Z., Lingard J. M. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system. J Physiol. 1976 May;257(2):257–274. doi: 10.1113/jphysiol.1976.sp011367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KINTER W. B. Renal tubular transport of diodrast-I 131 and PAH in Necturus: evidence for simultaneous reabsorption and secretion. Am J Physiol. 1959 May;196(5):1141–1149. doi: 10.1152/ajplegacy.1959.196.5.1141. [DOI] [PubMed] [Google Scholar]
  12. Khuri R. N., Agulian S. K., Bogharian K., Aklanjian D. Electrochemical potentials of chloride in proximal renal tubule of Necturus maculosus. Comp Biochem Physiol A Comp Physiol. 1975 Apr 1;50(4):695–700. doi: 10.1016/0300-9629(75)90131-0. [DOI] [PubMed] [Google Scholar]
  13. LICHTENSTEIN N. S., LEAF A. EFFECT OF AMPHOTERICIN B ON THE PERMEABILITY OF THE TOAD BLADDER. J Clin Invest. 1965 Aug;44:1328–1342. doi: 10.1172/JCI105238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Labarca P., Canessa M., Leaf A. Metabolic cost of sodium transport in toad urinary bladder. J Membr Biol. 1977 Apr 22;32(3-4):383–401. doi: 10.1007/BF01905229. [DOI] [PubMed] [Google Scholar]
  15. Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol. 1976 Aug 27;28(1):41–70. doi: 10.1007/BF01869690. [DOI] [PubMed] [Google Scholar]
  16. Robinson B. A., Macknight A. D. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium. J Membr Biol. 1976 Mar 18;26(2-3):269–286. doi: 10.1007/BF01868877. [DOI] [PubMed] [Google Scholar]
  17. SHIPP J. C., HANENSON I. B., WINDHAGER E. E., SCHATZMANN H. J., WHITTEMBURY G., YOSHIMURA H., SOLOMON A. K. Single proximal tubules of the Necturus kidney; methods for micropuncture and microperfusion. Am J Physiol. 1958 Dec;195(3):563–569. doi: 10.1152/ajplegacy.1958.195.3.563. [DOI] [PubMed] [Google Scholar]
  18. Spector D., Hayslett J. P., Kashgarian M. Na-K-ATPase-mediated seasonal variation of sodium transport in Necturus kidney. Am J Physiol. 1974 Oct;227(4):873–877. doi: 10.1152/ajplegacy.1974.227.4.873. [DOI] [PubMed] [Google Scholar]
  19. Spring K. R. Current-induced voltage transients in Necturus proximal tubule. J Membr Biol. 1973 Nov 8;13(4):299–322. doi: 10.1007/BF01868234. [DOI] [PubMed] [Google Scholar]
  20. Spring K. R., Paganelli C. V. Sodium flux in Necturus proximal tubule under voltage clamp. J Gen Physiol. 1972 Aug;60(2):181–201. doi: 10.1085/jgp.60.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stroup R. F., Weinman E., Hayslett J. P., Kashgarian M. Effect of luminal permeability on net transport across the amphibian proximal tubule. Am J Physiol. 1974 May;226(5):1110–1116. doi: 10.1152/ajplegacy.1974.226.5.1110. [DOI] [PubMed] [Google Scholar]
  22. Tanner G. A., Kinter W. B. Reabsorption and secretion of p-aminohippurate and Diodrast in Necturus kidney. Am J Physiol. 1966 Feb;210(2):221–231. doi: 10.1152/ajplegacy.1966.210.2.221. [DOI] [PubMed] [Google Scholar]
  23. Tanner G. A. Micropuncture study of PAH and Diodrast transport in Necturus kidney. Am J Physiol. 1967 Jun;212(6):1341–1346. doi: 10.1152/ajplegacy.1967.212.6.1341. [DOI] [PubMed] [Google Scholar]
  24. Ullrich K. J. Renal tubular mechanisms of organic solute transport. Kidney Int. 1976 Feb;9(2):134–148. doi: 10.1038/ki.1976.17. [DOI] [PubMed] [Google Scholar]
  25. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES