Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Nov 1;70(5):621–633. doi: 10.1085/jgp.70.5.621

Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors

PMCID: PMC2228473  PMID: 591915

Abstract

Two partly independent electrophysiological methods are described for measuring the number of rhodopsin molecules (R) in single ventral photoreceptors. Method 1 is based on measurements of the relative intensity required to elicit a quantal response and the relative intensity required to half-saturate the early receptor potential (ERP). Method 2 is based on measurements of the absolute intensity required to elicit a quantal response. Both methods give values of R approximately equal to 10(9). From these and other measurements, estimates are derived for the surface density of rhodopsin (8,000/micrometer2), the charge movement during the ERP per isomerized rhodopsin (20 X 10(-21) C), and the half-time for thermal isomerization of rhodopsin (36yr).

Full Text

The Full Text of this article is available as a PDF (677.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARLOW H. B. Retinal noise and absolute threshold. J Opt Soc Am. 1956 Aug;46(8):634–639. doi: 10.1364/josa.46.000634. [DOI] [PubMed] [Google Scholar]
  3. Blasie J. K., Dewey M. M., Blaurock A. E., Worthington C. R. Electron microscope and low-angle x-ray diffraction studies on outer segment membranes from the retina of the frog. J Mol Biol. 1965 Nov;14(1):143–152. doi: 10.1016/s0022-2836(65)80236-4. [DOI] [PubMed] [Google Scholar]
  4. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J. E., Murray J. R., Smith T. G. Photoelectric potential from photoreceptor cells in ventral eye of Limulus. Science. 1967 Nov 3;158(3801):665–666. doi: 10.1126/science.158.3801.665. [DOI] [PubMed] [Google Scholar]
  6. CONE R. A. EARLY RECEPTOR POTENTIAL OF THE VERTEBRATE RETINA. Nature. 1964 Nov 21;204:736–739. doi: 10.1038/204736a0. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. S., Hubbell W. L. Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res. 1973 Dec 24;17(6):517–532. doi: 10.1016/0014-4835(73)90082-1. [DOI] [PubMed] [Google Scholar]
  8. Clark A. W., Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. I. The microanatomy. J Gen Physiol. 1969 Sep;54(3):289–309. doi: 10.1085/jgp.54.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daemen F. J. Vertebrate rod outer segment membranes. Biochim Biophys Acta. 1973 Nov 28;300(3):255–288. doi: 10.1016/0304-4157(73)90006-3. [DOI] [PubMed] [Google Scholar]
  10. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  11. Eguchi E., Waterman T. H. Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell Tissue Res. 1976 Jul 6;169(4):419–434. doi: 10.1007/BF00218144. [DOI] [PubMed] [Google Scholar]
  12. FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fernandez H. R., Nickel E. E. Ultrastructural and molecular characteristics of crayfish photoreceptor membranes. J Cell Biol. 1976 Jun;69(3):721–732. doi: 10.1083/jcb.69.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldsmith T. H., Wehner R. Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol. 1977 Oct;70(4):453–490. doi: 10.1085/jgp.70.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorman A. L., Mirolli M. The passive electrical properties of the membrane of a molluscan neurone. J Physiol. 1972 Dec;227(1):35–49. doi: 10.1113/jphysiol.1972.sp010018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HUBBARD R., WALD G. Visual pigment of the horseshoe crab, Limulus polyphemus. Nature. 1960 Apr 16;186:212–215. doi: 10.1038/186212b0. [DOI] [PubMed] [Google Scholar]
  17. Hagins W. A. Electrical signs of information flow in photoreceptors. Cold Spring Harb Symp Quant Biol. 1965;30:403–418. doi: 10.1101/sqb.1965.030.01.040. [DOI] [PubMed] [Google Scholar]
  18. Hagins W. A., Rüppel H. Fast photoelectric effects and the properties of vertebrate photoreceptors as electric cables. Fed Proc. 1971 Jan-Feb;30(1):64–68. [PubMed] [Google Scholar]
  19. Hara T., Hara R. New photosensitive pigment found in the retina of the squid Ommastrephes. Nature. 1965 Jun 26;206(991):1331–1334. doi: 10.1038/2061331a0. [DOI] [PubMed] [Google Scholar]
  20. Harris W. A., Ready D. F., Lipson E. D., Hudspeth A. J., Stark W. S. Vitamin A deprivation and Drosophila photopigments. Nature. 1977 Apr 14;266(5603):648–650. doi: 10.1038/266648a0. [DOI] [PubMed] [Google Scholar]
  21. Hillman P., Dodge F. A., Hochstein S., Knight B. W., Minke B. Rapid dark recovery of the invertebrate early receptor potential. J Gen Physiol. 1973 Jul;62(1):77–86. doi: 10.1085/jgp.62.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hodgkin A. L., Obryan P. M. Internal recording of the early receptor potential in turtle cones. J Physiol. 1977 Jun;267(3):737–766. doi: 10.1113/jphysiol.1977.sp011836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hubbard R., Kropf A. THE ACTION OF LIGHT ON RHODOPSIN. Proc Natl Acad Sci U S A. 1958 Feb;44(2):130–139. doi: 10.1073/pnas.44.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lisman J. E., Sheline Y. Analysis of the rhodopsin cycle in limulus ventral photoreceptors using the early receptor potential. J Gen Physiol. 1976 Nov;68(5):487–501. doi: 10.1085/jgp.68.5.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murray G. C. Intracellular absorption difference spectrum of Limulus extra-ocular photolabile pigment. Science. 1966 Dec 2;154(3753):1182–1183. doi: 10.1126/science.154.3753.1182. [DOI] [PubMed] [Google Scholar]
  28. Srebro R., Behbehani M. The thermal origin of spontaneous activity in the Limulus photoreceptor. J Physiol. 1972 Jul;224(2):349–361. doi: 10.1113/jphysiol.1972.sp009899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WILLIAMS T. P. PHOTOREVERSAL OF RHODOPSIN BLEACHING. J Gen Physiol. 1964 Mar;47:679–689. doi: 10.1085/jgp.47.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES