Abstract
Human red blood cells have been incubated in the presence of nystatin, which allows Na and K, as well as Cl and pH to equilibrate rapidly when cell volume is set with external impermeant sucrose. The intracellular mean ionic activity coefficients, relative to values in the extracellular solution, for KCl and NaCl are 1.01 +/- 0.02 and 0.99 +/- 0.02 (SD, n = 10), respectively, and are independent of external pH, pH o, and of [sucrose]o. With nystatin the dependence of red cell volume on [sucrose]o deviates from ideal osmotic behavior by as much as a factor of three. A virial equation for the osmotic coefficient, phi, of human hemoglobin, Hb, accounts for the cell volumes, and is the same as that which describes Adair's measurements of phi Hb for Hb isolated from sheep and ox bloods. In the presence of nystatin the slope of the acid-base titration curve of the cells is independent of cell volume, implying that the charge on impermeant cellular solutes is independent of Hb concentration at constant pH. By modifying the Jacobs-stewart equations (1947. J. Cell. Comp. Physiol. 30: 79--103) with the osmotic coefficients of Hb and of salts, a nonideal thermodynamic model has been devised which predicts equilibrium Donnan ratios and red cell volume from the composition of the extracellular solution and from certain parameters of the cells. In addition to accounting for the dependence of cell volume on osmotic pressure, the model also describes accurately the dependence of Donnan ratios and cell volumes on pHo either in the presence or absence of nystatin.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).