Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1980 Aug 1;76(2):233–247. doi: 10.1085/jgp.76.2.233

Cationic selectivity and competition at the sodium entry site in frog skin

PMCID: PMC2228591  PMID: 6251157

Abstract

The cation selectivity of the Na entry mechanism located in the outer membrane of the bullfrog (Rana catesbeiana) skin epithelium was studied. This selectivity was determined by measuring the short-circuit current when all of the external sodium was replaced by another cation and, also, by noting the relative degree of inhibition that the alkali metal cations produced on Na influx. The ability of the Group Ia cations to permeate the apical membrane was determined from the tracer uptake experiments. The results demonstrate that (a) only Li and Na are actively transported through the epithelium; (b) the alkali cations K, Rb, and Cs do not enter the epithelium through the apical border and, therefore, Na and Li are the only alkali cations translocated through this membrane; (c) these impermeable cations are competitive inhibitors of Na entry; (d) the cations NH4 and Tl exhibit more complex behavior but, under well-defined conditions, also inhibit Na entry; and (e) the selectivity of the cation binding site is in the sequence Li congruent to Na > Tl > NH4 congruent to K > Rb > Cs, which corresponds to a high field strength site with tetrahedral symmetry.

Full Text

The Full Text of this article is available as a PDF (914.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benos D. J., Mandel L. J., Balaban R. S. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol. 1979 Mar;73(3):307–326. doi: 10.1085/jgp.73.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benos D. J., Simon S. A., Mandel L. J., Cala P. M. Effect of amiloride and some of its analogues of cation transport in isolated frog skin and thin lipid membranes. J Gen Physiol. 1976 Jul;68(1):43–63. doi: 10.1085/jgp.68.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biber T. U., Sanders M. L. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin. J Gen Physiol. 1973 May;61(5):529–551. doi: 10.1085/jgp.61.5.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CEREIJIDO M., HERRERA F. C., FLANIGAN W. J., CURRAN P. F. THE INFLUENCE OF NA CONCENTRATION ON NA TRANSPORT ACROSS FROG SKIN. J Gen Physiol. 1964 May;47:879–893. doi: 10.1085/jgp.47.5.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cala P. M., Cogswell N., Mandel L. J. Binding of [3H]ouabain to split frog skin: the role of the Na,K-ATPase in the generation of short circuit current. J Gen Physiol. 1978 Apr;71(4):347–367. doi: 10.1085/jgp.71.4.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Candia O. A., Chiarandini D. J. Transport of lithium and rectification by frog skin. Biochim Biophys Acta. 1973 May 25;307(3):578–589. doi: 10.1016/0005-2736(73)90302-7. [DOI] [PubMed] [Google Scholar]
  7. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisenman G., Sandblom J., Neher E. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding. Biophys J. 1978 May;22(2):307–340. doi: 10.1016/S0006-3495(78)85491-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuchs W., Larsen E. H., Lindemann B. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol. 1977 May;267(1):137–166. doi: 10.1113/jphysiol.1977.sp011805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagiwara S., Miyazaki S., Krasne S., Ciani S. Anomalous permeabilities of the egg cell membrane of a starfish in K+-Tl+ mixtures. J Gen Physiol. 1977 Sep;70(3):269–281. doi: 10.1085/jgp.70.3.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heckmann K., Lindemann B., Schnakenberg J. Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion. Biophys J. 1972 Jun;12(6):683–702. doi: 10.1016/S0006-3495(72)86112-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hille B. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol. 1975 Nov;66(5):535–560. doi: 10.1085/jgp.66.5.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hille B. The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol. 1972 Jun;59(6):637–658. doi: 10.1085/jgp.59.6.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  16. LINDLEY B. D., HOSHIKO T. THE EFFECTS OF ALKALI METAL CATIONS AND COMMON ANIONS ON THE FROG SKIN POTENTIAL. J Gen Physiol. 1964 Mar;47:749–771. doi: 10.1085/jgp.47.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Landowne D. A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid. J Physiol. 1975 Oct;252(1):79–96. doi: 10.1113/jphysiol.1975.sp011135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leblanc G. The mechanism of lithium accumulation in the isolated frog skin epithelium. Pflugers Arch. 1972;337(1):1–18. doi: 10.1007/BF00587867. [DOI] [PubMed] [Google Scholar]
  19. Mandel L. J., Curran P. F. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway. J Gen Physiol. 1972 May;59(5):503–518. doi: 10.1085/jgp.59.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandel L. J. Effects of pH, Ca, ADH, and theophylline on kinetics of Na entry in frog skin. Am J Physiol. 1978 Jul;235(1):C35–C48. doi: 10.1152/ajpcell.1978.235.1.C35. [DOI] [PubMed] [Google Scholar]
  21. Morel F., Leblanc G. Transient current changes and Na compartimentalization in frog skin epithelium. Pflugers Arch. 1975 Jul 21;358(2):135–157. doi: 10.1007/BF00583924. [DOI] [PubMed] [Google Scholar]
  22. Moreno J. H., Diamond J. M. Discrimination of monovalent inorganic cations by "tight" junctions of gallbladder epithelium. J Membr Biol. 1974;15(3):277–318. doi: 10.1007/BF01870092. [DOI] [PubMed] [Google Scholar]
  23. Moreno J. H., Reisin I. L., Rodríguez Boulan E., Rotunno C. A., Cereijido M. Barriers to sodium movement across frog skin. J Membr Biol. 1973;11(2):99–115. doi: 10.1007/BF01869815. [DOI] [PubMed] [Google Scholar]
  24. Nagel W. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. J Physiol. 1977 Aug;269(3):777–796. doi: 10.1113/jphysiol.1977.sp011929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reuss L., Finn A. L. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium. J Membr Biol. 1975;20(1-2):191–204. doi: 10.1007/BF01870636. [DOI] [PubMed] [Google Scholar]
  26. Rick R., Dörge A., Nagel W. Influx and efflux of sodium at the outer surface of frog skin. J Membr Biol. 1975;22(2):183–196. doi: 10.1007/BF01868170. [DOI] [PubMed] [Google Scholar]
  27. Rotunno C. A., Vilallonga F. A., Fernández M., Cereijido M. The penetration of sodium into the epithelium of the frog skin. J Gen Physiol. 1970 Jun;55(6):716–735. doi: 10.1085/jgp.55.6.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szabo G., Eisenman G., Laprade R., Ciani S. M., Krasne S. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity. Membranes. 1973;2:179–328. [PubMed] [Google Scholar]
  29. Turnheim K., Frizzell R. A., Schultz S. G. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J Membr Biol. 1978 Mar 10;39(2-3):233–256. doi: 10.1007/BF01870333. [DOI] [PubMed] [Google Scholar]
  30. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  31. ZERAHN K. Studies on the active transport of lithium in the isolated frog skin. Acta Physiol Scand. 1955 Aug 19;33(4):347–358. doi: 10.1111/j.1748-1716.1955.tb01214.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES