Abstract
Responses to repetitive stimulation were monitored at several retinal levels in the eyecup of the mudpuppy Necturus maculosus. When alternating sequences of low-intensity small and large spots were presented, two effects were found, which could be localized to the proximal retina: (a) response decrement (RD), in which, after the first small spot response, subsequent small spot responses are decreased in amplitude and (b) transient response enhancement (TRE), in which the first small spot response after a large spot sequence is larger than preceding or subsequent small spot responses. RD and TRE are absent or weak in sustained on or off responses (horizontal and bipolar cells, and ON and OFF ganglion cell post-stimulus time histograms (PSTH) but are particularly well developed in the on/off responses of the proximal retina (proximal negative response, M-wave, PSTHs of ON/OFF ganglion cells, and intracellular responses from on/off neurons and Muller cells). RD and TRE appear to arise from a stimulus-evoked slow depolarization in on/off neurons that interacts with the amplitude of succeeding responses. We conclude that RD and TRE are a form of neural adaptation that is largely specific to the on/off channels of the proximal retina.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN K. T., WATANABE K. NEURAL STAGE OF ADAPTATION BETWEEN THE RECEPTORS AND INNER NUCLEAR LAYER OF MONKEY RETINA. Science. 1965 May 21;148(3673):1113–1115. doi: 10.1126/science.148.3673.1113. [DOI] [PubMed] [Google Scholar]
- Brown K. T. The eclectroretinogram: its components and their origins. Vision Res. 1968 Jun;8(6):633–677. doi: 10.1016/0042-6989(68)90041-2. [DOI] [PubMed] [Google Scholar]
- Burkhardt D. A. Proximal negative response of frog retina. J Neurophysiol. 1970 May;33(3):405–420. doi: 10.1152/jn.1970.33.3.405. [DOI] [PubMed] [Google Scholar]
- Creed R. S., Granit R. Observations on the retinal action potential with especial reference to the response to intermittent stimulation. J Physiol. 1933 Jul 10;78(4):419–441. doi: 10.1113/jphysiol.1933.sp003014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dacheux R. F., Frumkes T. E., Miller R. F. Pathways and polarities of synaptic interactions in the inner retina of the mudpuppy: I. Synaptic blocking studies. Brain Res. 1979 Jan 26;161(1):1–12. doi: 10.1016/0006-8993(79)90191-4. [DOI] [PubMed] [Google Scholar]
- Dick E., Miller R. F. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 1978 Oct 13;154(2):388–394. doi: 10.1016/0006-8993(78)90711-4. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Ripps H. Potassium and retinal sensitivity. Brain Res. 1976 May 14;107(3):617–622. doi: 10.1016/0006-8993(76)90149-9. [DOI] [PubMed] [Google Scholar]
- Enoch J. M. Quantitative layer-by-layer perimetry. Invest Ophthalmol Vis Sci. 1978 Mar;17(3):208–257. [PubMed] [Google Scholar]
- Green D. G., Dowling J. E., Siegel I. M., Ripps H. Retinal mechanisms of visual adaptation in the skate. J Gen Physiol. 1975 Apr;65(4):483–502. doi: 10.1085/jgp.65.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko A., Hashimoto H. Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. Vision Res. 1969 Jan;9(1):37–55. doi: 10.1016/0042-6989(69)90030-3. [DOI] [PubMed] [Google Scholar]
- Karowski C. J., Proenza L. M. Relationship between Müller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977 Mar;40(2):244–259. doi: 10.1152/jn.1977.40.2.244. [DOI] [PubMed] [Google Scholar]
- Karwoski C. J., Brukhardt D. A. Ganglion cell responses of the mudpuppy retina to flashing and moving stimuli. Vision Res. 1976;16(12):1483–1495. doi: 10.1016/0042-6989(76)90169-3. [DOI] [PubMed] [Google Scholar]
- Karwoski C. J., Proenza L. M. Light-evoked changes in extracellular potassium concentration in munpuppy retina. Brain Res. 1978 Mar 10;142(3):515–530. doi: 10.1016/0006-8993(78)90913-7. [DOI] [PubMed] [Google Scholar]
- Karwoski C. J., Proenza L. M. Neurons, potassium, and glia in proximal retina of Necturus. J Gen Physiol. 1980 Feb;75(2):141–162. doi: 10.1085/jgp.75.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kline R. P., Ripps H., Dowling J. E. Generation of b-wave currents in the skate retina. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5727–5731. doi: 10.1073/pnas.75.11.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. F., Dacheux R. F. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. II. Chloride-dependent ganglion cell mechanisms. J Gen Physiol. 1976 Jun;67(6):661–678. doi: 10.1085/jgp.67.6.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
- Miller R. F. Role of K + in generation of b-wave of electroretinogram. J Neurophysiol. 1973 Jan;36(1):28–38. doi: 10.1152/jn.1973.36.1.28. [DOI] [PubMed] [Google Scholar]
- Naka K. Functional organization of catfish retina. J Neurophysiol. 1977 Jan;40(1):26–43. doi: 10.1152/jn.1977.40.1.26. [DOI] [PubMed] [Google Scholar]
- Proenza L. M., Burkhardt D. A. Proximal negative response and retinal sensitivity in the mudpuppy, Necturus maculosus. J Neurophysiol. 1973 May;36(3):502–518. doi: 10.1152/jn.1973.36.3.502. [DOI] [PubMed] [Google Scholar]
- Saito T., Kondo H., Toyoda J. I. Ionic mechanisms of two types of on-center bipolar cells in the carp retina. I. The responses to central illumination. J Gen Physiol. 1979 Jan;73(1):73–90. doi: 10.1085/jgp.73.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapley R. M., Victor J. D. Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. J Physiol. 1979 May;290(2):141–161. doi: 10.1113/jphysiol.1979.sp012765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapley R. M., Victor J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol. 1978 Dec;285:275–298. doi: 10.1113/jphysiol.1978.sp012571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teller D. Y., Matter C., Phillips W. D., Alexander K. Sensitization by annular surrounds: sensitization and masking. Vision Res. 1971 Dec;11(12):1445–1458. doi: 10.1016/0042-6989(71)90065-4. [DOI] [PubMed] [Google Scholar]
- Werblin F. S. Regenerative amacrine cell depolarization and formation of on-off ganglion cell response. J Physiol. 1977 Jan;264(3):767–785. doi: 10.1113/jphysiol.1977.sp011693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westheimer G. Spatial interaction in the human retina during scotopic vision. J Physiol. 1965 Dec;181(4):881–894. doi: 10.1113/jphysiol.1965.sp007803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wunk D. F., Werblin F. S. Synaptic inputs to the ganglion cells in the tiger salamander retina. J Gen Physiol. 1979 Mar;73(3):265–286. doi: 10.1085/jgp.73.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]