Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1981 Jul 1;78(1):19–42. doi: 10.1085/jgp.78.1.19

Active and passive electrical properties of single bullfrog atrial cells

PMCID: PMC2228627  PMID: 6973007

Abstract

Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cells via phase-contrast or Nomarski optics (magnification, 400--600) indicates that cells range between 150 and 350 micrometers in length and 4 and 7 micrometers in diameter. The mean sarcomere length in relaxed, quiescent atrial cells in 2.05 micrometer. Conventional electrophysiological measurements have been made. In normal Ringer's solution (2.5 mM K+, 2.5 mM Ca++) acceptable cells have stable resting potentials of about -88 mV, and large (125 mV) long- duration (approximately 720 ms) action potentials can be elicited. The Vm vs. log[K+]0 relation obtained from isolated cells is similar to that of the intact atrium. The depolarizing phase of the action potential of isolated atrial myocytes exhibits two pharmacologically separable components: tetrodotoxin (10(-6) g/ml) markedly suppresses the initial regenerative depolarization, whereas verapamil (3 x 10(-6) M) inhibits the secondary depolarization and reduce the plateau height. A bridge circuit was used to estimate the input resistance (220 +/- 7 M omega) and time constant 20 +/- 7 ms) of these cells. Two- microelectrode experiments have revealed small differences in the electrotonic potentials recorded simultaneously at two different sites within a single cell. The equations for a linear, short cable were used to calculate the electrical constants of relaxed, single atrial cells: lambda = 921.3 +/- 29.5 micrometers; Ri = 118.1 +/- 24.5 omega cm; Rm = 7.9 +/- 1.2 x 10(3) omega cm2; Cm = 2.2 +/- 0.3 mu Fcm-2. These results and the atrial cell morphology suggest that this preparation may be particularly suitable for voltage-clamp studies.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONI H., DELIUS W. NACHWEIS VON ZWEI KOMPONENTEN IN DER ANSTIEGSPHASE DES AKTIONSPONTENTIALS VON FROSCHMYOKARDFASERN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Apr 6;283:187–202. [PubMed] [Google Scholar]
  2. Aceves J., Erlij D. Effects of norepinephrine on tissues of the frog heart atrium poisoned by tetrodotoxin. Nature. 1967 Sep 9;215(5106):1178–1179. doi: 10.1038/2151178b0. [DOI] [PubMed] [Google Scholar]
  3. Attwell D., Cohen I. The voltage clamp of multicellular preparations. Prog Biophys Mol Biol. 1977;31(3):201–245. doi: 10.1016/0079-6107(78)90009-3. [DOI] [PubMed] [Google Scholar]
  4. Attwell D., Eisner D., Cohen I. Voltage clamp and tracer flux data: effects of a restricted extra-cellular space. Q Rev Biophys. 1979 Aug;12(3):213–261. doi: 10.1017/s0033583500005448. [DOI] [PubMed] [Google Scholar]
  5. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bagby R. M., Young A. M., Dotson R. S., Fisher B. A., McKinnon K. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature. 1971 Dec 10;234(5328):351–352. doi: 10.1038/234351a0. [DOI] [PubMed] [Google Scholar]
  7. Baldwin K. M. The fine structure and electrophysiology of heart muscle cell injury. J Cell Biol. 1970 Sep;46(3):455–476. doi: 10.1083/jcb.46.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baumgarten C. M., Isenberg G. Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflugers Arch. 1977 Mar 11;368(1-2):19–31. doi: 10.1007/BF01063450. [DOI] [PubMed] [Google Scholar]
  9. Brown H. F., Noble D., Noble S. J. The influence of non-uniformity on the analysis of potassium currents in heart muscle. J Physiol. 1976 Jul;258(3):615–629. doi: 10.1113/jphysiol.1976.sp011437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown H. F., Noble S. J. A quantitative analysis of the slow component of delayed rectification in frog atrium. J Physiol. 1969 Oct;204(3):737–747. doi: 10.1113/jphysiol.1969.sp008941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown H., DiFrancesco D., Noble D., Noble S. The contribution of potassium accumulation to outward currents in frog atrium. J Physiol. 1980 Sep;306:127–149. doi: 10.1113/jphysiol.1980.sp013388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chapman R. A., Fry C. H. An analysis of the cable properties of frog ventricular myocardium. J Physiol. 1978 Oct;283:263–282. doi: 10.1113/jphysiol.1978.sp012499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark M. G., Gannon B. J., Bodkin N., Patten G. S., Berry M. N. An improved procedure for the high-yield preparation of intact beating heart cells from the adult rat biochemical and morphologic study. J Mol Cell Cardiol. 1978 Dec;10(12):1101–1121. doi: 10.1016/0022-2828(78)90355-3. [DOI] [PubMed] [Google Scholar]
  14. Connor J., Barr L., Jakobsson E. Electrical characteristics of frog atrial trabeculae in the double sucrose gap. Biophys J. 1975 Oct;15(10):1047–1067. doi: 10.1016/S0006-3495(75)85882-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Coraboeuf E. Ionic basis of electrical activity in cardiac tissues. Am J Physiol. 1978 Feb;234(2):H101–H116. doi: 10.1152/ajpheart.1978.234.2.H101. [DOI] [PubMed] [Google Scholar]
  16. Cranefield P. F., Wit A. L., Hoffman B. F. Conduction of the cardiac impulse. 3. Characteristics of very slow conduction. J Gen Physiol. 1972 Feb;59(2):227–246. doi: 10.1085/jgp.59.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dani A. M., Cittadini A., Inesi G. Calcium transport and contractile activity in dissociated mammalian heart cells. Am J Physiol. 1979 Sep;237(3):C147–C155. doi: 10.1152/ajpcell.1979.237.3.C147. [DOI] [PubMed] [Google Scholar]
  18. De Hemptinne A. Properties of the outward currents in frog atrial muscle. Pflugers Arch. 1971;329(4):321–331. doi: 10.1007/BF00588003. [DOI] [PubMed] [Google Scholar]
  19. DiFrancesco D., Ohba M., Ojeda C. Measurement and significance of the reversal potential for the pace-maker current (iK2) in sheep Purkinje fibres. J Physiol. 1979 Dec;297(0):135–162. doi: 10.1113/jphysiol.1979.sp013032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Eisenberg R. S., Engel E. The spatial variation of membrane potential near a small source of current in a spherical cell. J Gen Physiol. 1970 Jun;55(6):736–757. doi: 10.1085/jgp.55.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Engel E., Barcilon V., Eisenberg R. S. The interpretation of current-voltage relations recorded from a spherical cell with a single microelectrode. Biophys J. 1972 Apr;12(4):384–403. doi: 10.1016/S0006-3495(72)86091-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Farmer B. B., Harris R. A., Jolly W. W., Hathaway D. R., Katzberg A., Watanabe A. M., Whitlow A. L., Besch H. R., Jr Isolation and characterization of adult rat hearts cells. Arch Biochem Biophys. 1977 Mar;179(2):545–558. doi: 10.1016/0003-9861(77)90143-6. [DOI] [PubMed] [Google Scholar]
  23. Fay F. S., Delise C. M. Contraction of isolated smooth-muscle cells--structural changes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):641–645. doi: 10.1073/pnas.70.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  25. GLITSCH H. G., HAAS H. G., TRAUTWEIN W. THE EFFECT OF ADRENALINE ON THE K AND NA FLUXES IN THE FROG'S ATRIUM. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Feb 2;250:59–71. doi: 10.1007/BF00246883. [DOI] [PubMed] [Google Scholar]
  26. Gadsby D. C., Cranefield P. F. Two levels of resting potential in cardiac Purkinje fibers. J Gen Physiol. 1977 Dec;70(6):725–746. doi: 10.1085/jgp.70.6.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Giles W., Noble S. J. Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol. 1976 Sep;261(1):103–123. doi: 10.1113/jphysiol.1976.sp011550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Glick M. R., Burns A. H., Reddy W. J. Dispersion and isolation of beating cells from adult rat heart. Anal Biochem. 1974 Sep;61(1):32–42. doi: 10.1016/0003-2697(74)90329-7. [DOI] [PubMed] [Google Scholar]
  29. Haas H. G., Glitsch H. G., Kern R. Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Aussenkonzentration. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;288(1):43–64. [PubMed] [Google Scholar]
  30. Haas H. G., Kern R., Einwächter H. M., Tarr M. Kinetics of Na inactivation in frog atria. Pflugers Arch. 1971;323(2):141–157. doi: 10.1007/BF00586445. [DOI] [PubMed] [Google Scholar]
  31. Hagiwara S., Jaffe L. A. Electrical properties of egg cell membranes. Annu Rev Biophys Bioeng. 1979;8:385–416. doi: 10.1146/annurev.bb.08.060179.002125. [DOI] [PubMed] [Google Scholar]
  32. Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
  33. KISCH B. Electronmicroscopy of the frog's heart. Exp Med Surg. 1961;19:104–142. [PubMed] [Google Scholar]
  34. Katzung B. G. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ Res. 1975 Jul;37(1):118–127. doi: 10.1161/01.res.37.1.118. [DOI] [PubMed] [Google Scholar]
  35. Kline R. P., Cohen I., Falk R., Kupersmith J. Activity-dependent extracellular K+ fluctuations in canine Purkinje fibres. Nature. 1980 Jul 3;286(5768):68–71. doi: 10.1038/286068a0. [DOI] [PubMed] [Google Scholar]
  36. Kline R. P., Morad M. Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J Physiol. 1978 Jul;280:537–558. doi: 10.1113/jphysiol.1978.sp012400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lee K. S., Weeks T. A., Kao R. L., Akaike N., Brown A. M. Sodium current in single heart muscle cells. Nature. 1979 Mar 15;278(5701):269–271. doi: 10.1038/278269a0. [DOI] [PubMed] [Google Scholar]
  38. Niedergerke R., Orkand R. K. The dual effect of calcium on the action potential of the frog's heart. J Physiol. 1966 May;184(2):291–311. doi: 10.1113/jphysiol.1966.sp007916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Powell T., Terrar D. A., Twist V. W. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol. 1980 May;302:131–153. doi: 10.1113/jphysiol.1980.sp013234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Powell T., Twist V. W. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun. 1976 Sep 7;72(1):327–333. doi: 10.1016/0006-291x(76)90997-9. [DOI] [PubMed] [Google Scholar]
  42. Rajs J., Sundberg M., Sundby G. B., Danell N., Tornling G., Biberfeld P., Jakobsson S. W. A rapid method for the isolation of viable cardiac myocytes from adult rat. Exp Cell Res. 1978 Aug;115(1):183–189. doi: 10.1016/0014-4827(78)90415-9. [DOI] [PubMed] [Google Scholar]
  43. Reuter H. Properties of two inward membrane currents in the heart. Annu Rev Physiol. 1979;41:413–424. doi: 10.1146/annurev.ph.41.030179.002213. [DOI] [PubMed] [Google Scholar]
  44. Sakamoto Y. Membrane characteristics of the canine papillary muscle fiber. J Gen Physiol. 1969 Dec;54(6):765–781. doi: 10.1085/jgp.54.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scubon-Mulieri B., Sichel F. J. Intracellular resistance and conduction in bullfrog atrium. Physiol Chem Phys. 1975;7(6):541–554. [PubMed] [Google Scholar]
  46. Sommer J. R., Johnson E. A. Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z Zellforsch Mikrosk Anat. 1969;98(3):437–468. [PubMed] [Google Scholar]
  47. Spray D. C., Harris A. L., Bennett M. V. Voltage dependence of junctional conductance in early amphibian embryos. Science. 1979 Apr 27;204(4391):432–434. doi: 10.1126/science.312530. [DOI] [PubMed] [Google Scholar]
  48. Tarr M., Trank J. W. Chemically mediated cell-to-cell contractile activation in isolated frog atrial cardiac cells. Experientia. 1978 Nov 15;34(11):1472–1474. doi: 10.1007/BF01932361. [DOI] [PubMed] [Google Scholar]
  49. Tarr M., Trank J. W. Preparation of isolated single cardiac cells from adult frog atrial tissue. Experientia. 1976 Mar 15;32(3):338–340. doi: 10.1007/BF01940825. [DOI] [PubMed] [Google Scholar]
  50. Tarr M., Trank J. Equivalent circuit of frog atrial tissue as determined by voltage clamp-unclamp experiments. J Gen Physiol. 1971 Nov;58(5):511–522. doi: 10.1085/jgp.58.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Undrovinas A. I., Yushmanova A. V., Hering S., Rosenshtraukh L. V. Voltage clamp method on single cardiac cells from adult rat heart. Experientia. 1980 May 15;36(5):572–574. doi: 10.1007/BF01965808. [DOI] [PubMed] [Google Scholar]
  52. Vahouny G. V., Wei R. W., Tamboli A., Albert E. N. Adult canine myocytes: isolation, morphology and biochemical characteristics. J Mol Cell Cardiol. 1979 Apr;11(4):339–357. doi: 10.1016/0022-2828(79)90422-x. [DOI] [PubMed] [Google Scholar]
  53. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Walker J. L., Ladle R. O. Frog heart intracellular potassium activities measured with potassium microelectrodes. Am J Physiol. 1973 Jul;225(1):263–267. doi: 10.1152/ajplegacy.1973.225.1.263. [DOI] [PubMed] [Google Scholar]
  55. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970 Nov;210(4):1041–1054. doi: 10.1113/jphysiol.1970.sp009256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Winegrad S. Resting sarcomere length-tension relation in living frog heart. J Gen Physiol. 1974 Sep;64(3):343–355. doi: 10.1085/jgp.64.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zimmerman A. N., Hülsmann W. C. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature. 1966 Aug 6;211(5049):646–647. doi: 10.1038/211646a0. [DOI] [PubMed] [Google Scholar]
  58. de Mello W. C., Motta G. E., Chapeau M. A study on the healing-over of myocardial cells of toads. Circ Res. 1969 Mar;24(3):475–487. doi: 10.1161/01.res.24.3.475. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES