Abstract
On-center bipolar cells in the dark-adapted carp retina were divided into four types (A, B, C, and D) on the basis of response wave forms, spectral response properties, and electrical membrane properties. Type A and B cells responded to a spot of light with a transient depolarization followed by a plateau, whereas the response of type C and D cells were approximately rectangular in shape. The center and surround responses of type A cells had maximum spectral response of approximately 525 nm in the lower mesopic range; the polarity of both responses was reversed at positive membrane potentials as the membrane was depolarized by extrinsic current. The center and surround responses of type D cells had a maximum spectral response of approximately 625 nm in the mesopic or photopic range; the polarity of both responses was reversed at membrane potentials that were more negative than those at the dark level. The results suggest that the center and surround responses mediated by rods are generated by changes in sodium conductance, but in opposite ways; whereas those mediated by red cones are generated by changes in potassium and/or chloride conductances. In type B and C cells, which probably receive inputs from both rods and/or green cones as well as red cones, the center responses were composed of the two ionic mechanisms described above. The surround responses of many type B and C cells were dominated by only one ionic mechanism with a negative reversal potential, but in some type B cells the surround responses were resulted from two ionic mechanisms similar to those of the center responses.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashmore J. F., Falk G. Responses of rod bipolar cells in the dark-adapted retina of the dogfish, Scyliorhinus canicula. J Physiol. 1980 Mar;300:115–150. doi: 10.1113/jphysiol.1980.sp013155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byzov A. L., Trifonov J. A. The response to electric stimulation of horizontal cells in the carp retina. Vision Res. 1968 Jul;8(7):817–822. doi: 10.1016/0042-6989(68)90132-6. [DOI] [PubMed] [Google Scholar]
- Copenhagen D. R., Owen W. G. Coupling between rod photoreceptors in a vertebrate retina. Nature. 1976 Mar 4;260(5546):57–59. doi: 10.1038/260057a0. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Ripps H. S-potentials in the skate retina. Intracellular recordings during light and dark adaptation. J Gen Physiol. 1971 Aug;58(2):163–189. doi: 10.1085/jgp.58.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain G. L. Sensitivity of toad rods: Dependence on wave-length and background illumination. J Physiol. 1976 Sep;261(1):71–101. doi: 10.1113/jphysiol.1976.sp011549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuortes M. G., Schwartz E. A., Simon E. J. Colour-dependence of cone responses in the turtle retina. J Physiol. 1973 Oct;234(1):199–216. doi: 10.1113/jphysiol.1973.sp010341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida A. T., Stell W. K., Lightfoot D. O. Rod and cone inputs to bipolar cells in goldfish retina. J Comp Neurol. 1980 Jun;191(3):315–335. doi: 10.1002/cne.901910302. [DOI] [PubMed] [Google Scholar]
- Kaneko A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J Physiol. 1973 Nov;235(1):133–153. doi: 10.1113/jphysiol.1973.sp010381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneko A., Tachibana M. Convergence of rod and cone signals to single bipolar cells in the carp retina. Sens Processes. 1978 Dec;2(4):383–387. [PubMed] [Google Scholar]
- Lasansky A., Marchiafava P. L. Light-induced resistance changes in retinal rods and cones of the tiger salamander. J Physiol. 1974 Jan;236(1):171–191. doi: 10.1113/jphysiol.1974.sp010429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami M., Shimoda Y., Nakatani K. Effects of GABA on neuronal activities in the distal retina of the carp. Sens Processes. 1978 Dec;2(4):334–338. [PubMed] [Google Scholar]
- Naka K. I. Receptive field mechanism in the vertebrate retina. Science. 1971 Feb 19;171(3972):691–693. doi: 10.1126/science.171.3972.691. [DOI] [PubMed] [Google Scholar]
- Nelson R. A comparison of electrical properties of neurons in Necturus retina. J Neurophysiol. 1973 May;36(3):519–535. doi: 10.1152/jn.1973.36.3.519. [DOI] [PubMed] [Google Scholar]
- Nelson R. Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol. 1977 Mar 1;172(1):109–135. doi: 10.1002/cne.901720106. [DOI] [PubMed] [Google Scholar]
- Normann R. A., Werblin F. S. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J Gen Physiol. 1974 Jan;63(1):37–61. doi: 10.1085/jgp.63.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piccolino M., Gerschenfeld H. M. Characteristics and ionic processes involved in feedback spikes of turtle cones. Proc R Soc Lond B Biol Sci. 1980 Jan 17;206(1165):439–463. doi: 10.1098/rspb.1980.0007. [DOI] [PubMed] [Google Scholar]
- Saito T., Kondo H. Ionic mechanisms underlying the center and surround responses of on-center bipolar cells in the carp retina. Sens Processes. 1978 Dec;2(4):350–358. [PubMed] [Google Scholar]
- Saito T., Kondo H., Toyoda J. I. Ionic mechanisms of two types of on-center bipolar cells in the carp retina. I. The responses to central illumination. J Gen Physiol. 1979 Jan;73(1):73–90. doi: 10.1085/jgp.73.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito T., Kondo H., Toyoda J. Rod and cone signals in the on-center bipolar cell: their different ionic mechanisms. Vision Res. 1978;18(5):591–595. doi: 10.1016/0042-6989(78)90208-0. [DOI] [PubMed] [Google Scholar]
- Schwartz E. A. Cones excite rods in the retina of the turtle. J Physiol. 1975 Apr;246(3):639–651. doi: 10.1113/jphysiol.1975.sp010908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stell W. K., Ishida A. T., Lightfoot D. O. Structural basis for on-and off-center responses in retinal bipolar cells. Science. 1977 Dec 23;198(4323):1269–1271. doi: 10.1126/science.201028. [DOI] [PubMed] [Google Scholar]
- Tomita T. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol. 1965;30:559–566. doi: 10.1101/sqb.1965.030.01.054. [DOI] [PubMed] [Google Scholar]
- Toyoda J. I., Tonosaki K. Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina. Nature. 1978 Nov 23;276(5686):399–400. doi: 10.1038/276399a0. [DOI] [PubMed] [Google Scholar]
- Toyoda J., Tonosaki K. Studies on the mechanisms underlying horizontal-bipolar interaction in the carp retina. Sens Processes. 1978 Dec;2(4):359–365. [PubMed] [Google Scholar]
