Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Nov 1;80(5):733–751. doi: 10.1085/jgp.80.5.733

Sodium transport effects on the basolateral membrane in toad urinary bladder

PMCID: PMC2228639  PMID: 6816901

Abstract

In toad urinary bladder epithelium, inhibition of Na transport with amiloride causes a decrease in the apical (Vmc) and basolateral (Vcs) membrane potentials. In addition to increasing apical membrane resistance (Ra), amiloride also causes an increase in basolateral membrane resistance (Rb), with a time course such that Ra/Rb does not change for 1-2 min. At longer times after amiloride (3-4 min), Ra/Rb rises from its control values to its amiloride steady state values through a secondary decrease in Rb. Analysis of an equivalent electrical circuit of the epithelium shows that the depolarization of Vcs is due to a decrease in basolateral electromotive force (Vb). To see of the changes in Vcs and Rb are correlated with a decrease in Na transport, external current (Ie) was used to clamp Vmc to zero, and the effects of amiloride on the portion of Ie that takes the transcellular pathway were determined. In these studies, Vcs also depolarized, which suggests that the decrease in Vb was due to a decrease in the current output of a rheogenic Na pump. Thus, the basolateral membrane does not behave like an ohmic resistor. In contrast, when transport is inhibited during basolateral membrane voltage clamping, the apical membrane voltage changes are those predicted for a simple, passive (i.e., ohmic) element.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).


Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES