Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Aug 1;80(2):173–190. doi: 10.1085/jgp.80.2.173

Transport and phosphorylation of 2-deoxy-D-glucose by amphibian retina. Effects of light and darkness

PMCID: PMC2228677  PMID: 6981682

Abstract

We studied the uptake of 2-deoxy-D-glucose (2DG) and the synthesis of its phosphorylated product 2DG-6-phosphate (2DG-6P) by the retinas of the clawed frog (Xenopus laevis) and the bullfrog (Rana catesbeiana). Autoradiographs showed that most of the retinal 2DG uptake is by the photoreceptor layer. The 2DG accumulation by isolated Xenopus retinas was time and concentration dependent. The Kt for transport was 5.05 mM; Vmax was 6.99 X 10(-10) mol . mg-1 tissue wet weight min-1. The Km for 2DG-6P formation was estimated to be 2-3 mM and Vmax to be approximately 4 x 10(-9) mol . mg-1 min-1. 2DG uptake was inhibited competitively by glucose with a Ki of 2.29 mM. Exposure to light reduced 2DG uptake by no more than 10% as compared with dark uptake. Low sodium or ouabain (10(-4)-10(-7) M) treatment did not significantly alter 2DG uptake as compared with control retinas. In experiments upon intact, anesthetized bullfrogs, light reduced both the total amount of radioactivity acquired by the retina and the fraction of 2DG-6P present. The results are discussed in terms of the fraction of energy consumed by the retina required to maintain the photoreceptor dark current.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basinger S. F., Gordon W. C., Lam D. M. Differential labelling of retinal neurones by 3H-2-deoxyglucose. Nature. 1979 Aug 23;280(5724):682–684. doi: 10.1038/280682a0. [DOI] [PubMed] [Google Scholar]
  2. Drujan B. D., Svaetichin G., Negishi K. Retinal aerobic metabolism as reflected in S-potential behavior. Vision Res. 1971;Suppl 3:151–159. doi: 10.1016/0042-6989(71)90036-8. [DOI] [PubMed] [Google Scholar]
  3. Engbretson G. A., Witkovsky P. Rod sensitivity and visual pigment concentration in Xenopus. J Gen Physiol. 1978 Dec;72(6):801–819. doi: 10.1085/jgp.72.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frank R. N., Goldsmith T. H. Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J Gen Physiol. 1967 Jul;50(6):1585–1606. doi: 10.1085/jgp.50.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holtzman E., Gronowicz G., Mercurio A. Notes on the heterogeneity, circulation, and modification of membranes, with emphasis on secretory cells, photoreceptors, and the toad bladder. Biomembranes. 1979;10:77–139. doi: 10.1007/978-1-4615-6564-2_3. [DOI] [PubMed] [Google Scholar]
  6. Hubel D. H., Wiesel T. N., Stryker M. P. Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol. 1978 Feb 1;177(3):361–380. doi: 10.1002/cne.901770302. [DOI] [PubMed] [Google Scholar]
  7. Jaffe M. J., Pautler E. L. The effect of light on the respiration of retinas of several vertebrate and invertebrate species with special emphasis on the effects of acetylcholine and gamma-aminobutyric acid on the frog retina. Exp Eye Res. 1975 Jun;20(6):531–540. doi: 10.1016/0014-4835(75)90220-1. [DOI] [PubMed] [Google Scholar]
  8. Kai Kai M. A., Pentreath V. W. High resolution analysis of [3H]2-deoxyglucose incorporation into neurons and glial cells in invertebrate ganglia: histological processing of nervous tissue for selective marking of glycogen. J Neurocytol. 1981 Aug;10(4):693–708. doi: 10.1007/BF01262598. [DOI] [PubMed] [Google Scholar]
  9. Kaneko A. Physiology of the retina. Annu Rev Neurosci. 1979;2:169–191. doi: 10.1146/annurev.ne.02.030179.001125. [DOI] [PubMed] [Google Scholar]
  10. Kimble E. A., Svoboda R. A., Ostroy S. E. Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp Eye Res. 1980 Sep;31(3):271–288. doi: 10.1016/s0014-4835(80)80037-6. [DOI] [PubMed] [Google Scholar]
  11. Knull H. R., Taylor W. F., Wells W. W. Effects of energy metabolism on in vivo distribution of hexokinase in brain. J Biol Chem. 1973 Aug 10;248(15):5414–5417. [PubMed] [Google Scholar]
  12. Korenbrot J. I., Cone R. A. Dark ionic flux and the effects of light in isolated rod outer segments. J Gen Physiol. 1972 Jul;60(1):20–45. doi: 10.1085/jgp.60.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kreutzberg G. W., Emmert H. Glucose utilization of motor nuclei during regeneration: a [14C]2-deoxyglucose study. Exp Neurol. 1980 Dec;70(3):712–716. doi: 10.1016/0014-4886(80)90197-1. [DOI] [PubMed] [Google Scholar]
  14. Lolley R. N. Cyclic nucleotide metabolism in the vertebrate retina. Curr Top Eye Res. 1980;2:67–118. [PubMed] [Google Scholar]
  15. Lund-Andersen H., Kjeldsen C. S. Uptake of glucose analogues by rat brain cortex slices: membrane transport versus metabolism of 2-deoxy-D-glucose. J Neurochem. 1977 Aug;29(2):205–211. doi: 10.1111/j.1471-4159.1977.tb09610.x. [DOI] [PubMed] [Google Scholar]
  16. Lund-Andersen H. Transport of glucose from blood to brain. Physiol Rev. 1979 Apr;59(2):305–352. doi: 10.1152/physrev.1979.59.2.305. [DOI] [PubMed] [Google Scholar]
  17. Mitzel D. L., Hall I. A., DeVries G. W., Cohen A. I., Ferrendelli J. A. Comparison of cyclic nucleotide and energy metabolism of intact mouse retina in situ and in vitro. Exp Eye Res. 1978 Jul;27(1):27–37. doi: 10.1016/0014-4835(78)90050-7. [DOI] [PubMed] [Google Scholar]
  18. Morjaria B., Voaden M. J. The uptake of [3H]2-deoxy glucose by light- and dark-adapted rat retinas in vivo. J Neurochem. 1979 Jun;32(6):1881–1883. doi: 10.1111/j.1471-4159.1979.tb02307.x. [DOI] [PubMed] [Google Scholar]
  19. Orr H. T., Lowry O. H., Cohen A. I., Ferrendelli J. A. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4442–4445. doi: 10.1073/pnas.73.12.4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
  21. Rose I. A., Warms J. V., Kosow D. P. Specificity for the glucose-6-P inhibition site of hexokinase. Arch Biochem Biophys. 1974 Oct;164(2):729–735. doi: 10.1016/0003-9861(74)90086-1. [DOI] [PubMed] [Google Scholar]
  22. Schnapf J. L., McBurney R. N. Light-induced changes in membrane current in cone outer segments of tiger salamander and turtle. Nature. 1980 Sep 18;287(5779):239–241. doi: 10.1038/287239a0. [DOI] [PubMed] [Google Scholar]
  23. Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977 Jul;29(1):13–26. doi: 10.1111/j.1471-4159.1977.tb03919.x. [DOI] [PubMed] [Google Scholar]
  24. Sokoloff L. The deoxyglucose method for the measurement of local glucose utilization and the mapping of local functional activity in the central nervous system. Int Rev Neurobiol. 1981;22:287–333. doi: 10.1016/s0074-7742(08)60296-2. [DOI] [PubMed] [Google Scholar]
  25. Winkler B. S. Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol. 1981 Jun;77(6):667–692. doi: 10.1085/jgp.77.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Winkler B. S., Simson V., Benner J. Importance of bicarbonate in retinal function. Invest Ophthalmol Vis Sci. 1977 Aug;16(8):766–768. [PubMed] [Google Scholar]
  27. Winkler B. S. The electroretinogram of the isolated rat retina. Vision Res. 1972 Jun;12(6):1183–1198. doi: 10.1016/0042-6989(72)90106-x. [DOI] [PubMed] [Google Scholar]
  28. Witkovsky P., Yang C. Y., Ripps H. Properties of a blue-sensitive rod in the Xenopus retina. Vision Res. 1981;21(6):875–883. doi: 10.1016/0042-6989(81)90188-7. [DOI] [PubMed] [Google Scholar]
  29. Witkovsky P., Yang C. Y. Uptake and localization of 3H-2 deoxy-D-glucose by retinal photoreceptors. J Comp Neurol. 1982 Jan 10;204(2):105–116. doi: 10.1002/cne.902040202. [DOI] [PubMed] [Google Scholar]
  30. Yau K. W., McNaughton P. A., Hodgkin A. L. Effect of ions on the light-sensitive current in retinal rods. Nature. 1981 Aug 6;292(5823):502–505. doi: 10.1038/292502a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES