Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Sep 1;80(3):451–472. doi: 10.1085/jgp.80.3.451

Euphausiid visual pigments. The rhodopsins of Euphausia superba and Meganyctiphanes norvegica (Crustacea, Euphausiacea)

PMCID: PMC2228684  PMID: 7142953

Abstract

The rhabdoms of Euphausia superba contain one digitonin-extractable rhodopsin, lambda max 485 nm. The rhodopsin undergoes unusual pH- dependent spectral changes: above neutrality, the absorbance decreases progressively at 485 nm and rises near 370 nm. This change is reversible and appears to reflect an equilibrium between a protonated and an unprotonated form of the rhodopsin Schiff-base linkage. Near neutral pH and at 10 degrees C, the rhodopsin is partiaLly converted by 420-nm light to a stable 493-nm metarhodopsin. The metarhodopsin is partially photoconverted to rhodopsin by long-wavelength light in the absence of NH2OH; in the presence of NH2OH, it is slowly converted to retinal oxime and opsin. The rhodopsin of Meganyctiphanes norvegica measured in fresh rhabdoms by microspectrophotometry has properties very similar to those of the extracted rhodopsin of E. superba. Its lambda max is 488 nm and it is partially photoconverted by short wavelength irradiation to a stable photoconvertible metarhodopsin similar to that of E. superba. In the presence of light and NH2OH, the M. norvegica metarhodopsin is converted to retinal oxime and opsin. Our results indicate that previous determinations of euphausiid rhodopsin absorbance spectra were incorrect because of accessory pigment contamination.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALL S., COLLINS F. D. Studies in vitamin A; reactions of retinene1 with amino compounds. Biochem J. 1949;45(3):304–307. doi: 10.1042/bj0450304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROWN P. K., BROWN P. S. Visual pigments of the octopus and cuttlefish. Nature. 1958 Nov 8;182(4645):1288–1290. doi: 10.1038/1821288a0. [DOI] [PubMed] [Google Scholar]
  3. Brown P. K., White R. H. Rhodopsin of the larval mosquito. J Gen Physiol. 1972 Apr;59(4):401–414. doi: 10.1085/jgp.59.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruno M. S., Goldsmith T. H. Rhodopsin of the blue crab Callinectes: evidence for absorption differences in vitro and in vivo. Vision Res. 1974 Aug;14(8):653–658. doi: 10.1016/0042-6989(74)90060-1. [DOI] [PubMed] [Google Scholar]
  5. COLLINS F. D. Rhodopsin and indicator yellow. Nature. 1953 Mar 14;171(4350):469–471. doi: 10.1038/171469a0. [DOI] [PubMed] [Google Scholar]
  6. DENTON E. J., WARREN F. J. Visual pigments of deep-sea fish. Nature. 1956 Nov 10;178(4541):1059–1059. doi: 10.1038/1781059a0. [DOI] [PubMed] [Google Scholar]
  7. Ebrey T. G., Honig B. Molecular aspects of photoreceptor function. Q Rev Biophys. 1975 May;8(2):129–184. doi: 10.1017/s0033583500001785. [DOI] [PubMed] [Google Scholar]
  8. Goldsmith T. H., Dizon A. E., Fernandez H. R. Microspectrophotometry of photoreceptor organelles from eyes of the prawn Palaemonetes. Science. 1968 Aug 2;161(3840):468–470. doi: 10.1126/science.161.3840.468. [DOI] [PubMed] [Google Scholar]
  9. Goldsmith T. H. The spectral absorption of crayfish rhabdoms: pigment, photoproduct and pH sensitivity. Vision Res. 1978;18(4):463–473. doi: 10.1016/0042-6989(78)90058-5. [DOI] [PubMed] [Google Scholar]
  10. HUBBARD R., ST GEORGE R. C. The rhodopsin system of the squid. J Gen Physiol. 1958 Jan 20;41(3):501–528. doi: 10.1085/jgp.41.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hagins W. A., McGaughy R. E. Molecular and thermal origins of fast photoelectric effects in the squid retina. Science. 1967 Aug 18;157(3790):813–816. doi: 10.1126/science.157.3790.813. [DOI] [PubMed] [Google Scholar]
  12. Hamdorf K., Schwemer J., Gogala M. Insect visual pigment sensitive to ultraviolet light. Nature. 1971 Jun 18;231(5303):458–459. doi: 10.1038/231458a0. [DOI] [PubMed] [Google Scholar]
  13. Hara T., Hara R. New photosensitive pigment found in the retina of the squid Ommastrephes. Nature. 1965 Jun 26;206(991):1331–1334. doi: 10.1038/2061331a0. [DOI] [PubMed] [Google Scholar]
  14. Hara T., Hara R. Rhodopsin and retinochrome in the squid retina. Nature. 1967 May 6;214(5088):573–575. doi: 10.1038/214573a0. [DOI] [PubMed] [Google Scholar]
  15. Hara T., Hara R., Takeuchi J. Rhodopsin and retinochrome in the octopus retina. Nature. 1967 May 6;214(5088):572–573. doi: 10.1038/214572a0. [DOI] [PubMed] [Google Scholar]
  16. MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MORTON R. A., PITT G. A. Studies on rhodopsin. IX. pH and the hydrolysis of indicator yellow. Biochem J. 1955 Jan;59(1):128–134. doi: 10.1042/bj0590128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MUNZ F. W. Photosensitive pigments from retinas of deep-sea fishes. Science. 1957 Jun 7;125(3258):1142–1143. doi: 10.1126/science.125.3258.1142. [DOI] [PubMed] [Google Scholar]
  19. WALD G., BROWN P. K. Human rhodopsin. Science. 1958 Jan 31;127(3292):222–226. doi: 10.1126/science.127.3292.222. [DOI] [PubMed] [Google Scholar]
  20. WALD G., BROWN P. K. The vitamin A of a euphausiid crustacean. J Gen Physiol. 1957 Mar 20;40(4):627–634. doi: 10.1085/jgp.40.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WALD G., HUBBARD R. Visual pigment of a decapod crustacean: the lobster. Nature. 1957 Aug 10;180(4580):278–280. doi: 10.1038/180278a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES