Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Oct 1;84(4):601–622. doi: 10.1085/jgp.84.4.601

Active ion transport in the renal proximal tubule. I. Transport and metabolic studies

PMCID: PMC2228750  PMID: 6502133

Abstract

Various aspects of the interrelationship between ion transport and cellular metabolism were investigated using a suspension of rabbit cortical tubules that were mainly proximal in nature. Using the intact tubules, the compartmentation of K within the renal cell was studied by performing 42K uptake studies. The oxygen consumption (QO2) of the tubules was measured under similar conditions, as well as when the Na pump was stimulated by increasing Na+ entry with nystatin. In addition, the state 3 rate of respiration was measured when the mitochondria of digitonin-permeabilized tubules were stimulated by ADP. At 37 and 25 degrees C, a single-compartmental uptake of 42K was observed, which suggests that extracellular K+ communicates with a single compartment within the renal cell. Between 37 and 15 degrees C, the ouabain- sensitive QO2 and the initial 42K uptake rate were parallel in an Arrhenius-type plot, which indicated that active ion transport and oxidative phosphorylation remain tightly coupled within this temperature range. At all temperatures between 37 and 15 degrees C, nystatin stimulated the QO2, which demonstrates that the entry of Na+ into the renal cells was rate limiting for active Na+ transport throughout this temperature range. Between 37 and 20 degrees C, the nystatin-stimulated QO2 was nearly equal to the state 3 rate of respiration, which suggests that active ion transport may be limited by ATP availability under these conditions. At 15 degrees C, nystatin addition stimulated the QO2 well below the state 3 respiratory rate.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuld R., Hohl C., Ansel A., Brierley G. P. Compartmentation of K+ in isolated adult rat heart cells. Arch Biochem Biophys. 1981 Jun;209(1):175–184. doi: 10.1016/0003-9861(81)90270-8. [DOI] [PubMed] [Google Scholar]
  2. Aronson P. S. Identifying secondary active solute transport in epithelia. Am J Physiol. 1981 Jan;240(1):F1–11. doi: 10.1152/ajprenal.1981.240.1.F1. [DOI] [PubMed] [Google Scholar]
  3. BURG M. B., GROLLMAN E. F., ORLOFF J. SODIUM AND POTASSIUM FLUX OF SEPARATED RENAL TUBULES. Am J Physiol. 1964 Mar;206:483–491. doi: 10.1152/ajplegacy.1964.206.3.483. [DOI] [PubMed] [Google Scholar]
  4. BURG M. B., ORLOFF J. ACTIVE CATION TRANSPORT BY KIDNEY TUBULES AT O C. Am J Physiol. 1964 Nov;207:983–988. doi: 10.1152/ajplegacy.1964.207.5.983. [DOI] [PubMed] [Google Scholar]
  5. Balaban R. S., Soltoff S. P., Storey J. M., Mandel L. J. Improved renal cortical tubule suspension: spectrophotometric study of O2 delivery. Am J Physiol. 1980 Jan;238(1):F50–F59. doi: 10.1152/ajprenal.1980.238.1.F50. [DOI] [PubMed] [Google Scholar]
  6. Beck F., Bauer R., Bauer U., Mason J., Dörge A., Rick R., Thurau K. Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int. 1980 Jun;17(6):756–763. doi: 10.1038/ki.1980.88. [DOI] [PubMed] [Google Scholar]
  7. Burg M. B., Orloff J. Effect of temperature and medium K on Na and K fluxes in separated renal tubules. Am J Physiol. 1966 Oct;211(4):1005–1010. doi: 10.1152/ajplegacy.1966.211.4.1005. [DOI] [PubMed] [Google Scholar]
  8. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  9. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  10. Charnock J. S., Doty D. M., Russell J. C. The effect of temperature on the activity of (Naplus plus K plus)-ATPase. Arch Biochem Biophys. 1971 Feb;142(2):633–637. doi: 10.1016/0003-9861(71)90528-5. [DOI] [PubMed] [Google Scholar]
  11. De Smedt H., Kinne R. Temperature dependence of solute transport and enzyme activities in hog renal brush border membrane vesicles. Biochim Biophys Acta. 1981 Nov 6;648(2):247–253. doi: 10.1016/0005-2736(81)90040-7. [DOI] [PubMed] [Google Scholar]
  12. Doucet A., Katz A. I., Morel F. Determination of Na-K-ATPase activity in single segments of the mammalian nephron. Am J Physiol. 1979 Aug;237(2):F105–F113. doi: 10.1152/ajprenal.1979.237.2.F105. [DOI] [PubMed] [Google Scholar]
  13. Ellory J. C., Willis J. S. Temperature dependence of membrane function. Disparity between active potassium transport and (Na+ & K+)ATPase activity. Biochim Biophys Acta. 1976 Aug 16;443(2):301–305. doi: 10.1016/0005-2736(76)90512-5. [DOI] [PubMed] [Google Scholar]
  14. Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
  15. GIEBISCH G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol. 1961 Mar;44:659–678. doi: 10.1085/jgp.44.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  17. Grisham C. M., Barnett R. E. The role of lipid-phase transitions in the regulation of the (sodium + potassium) adenosine triphosphatase. Biochemistry. 1973 Jul 3;12(14):2635–2637. doi: 10.1021/bi00738a013. [DOI] [PubMed] [Google Scholar]
  18. Gruener N., Avi-Dor Y. Temperature-dependence of activation and inhibition of rat-brain adenosine triphosphatase activated by sodium and potassium ions. Biochem J. 1966 Sep;100(3):762–767. doi: 10.1042/bj1000762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harris S. I., Balaban R. S., Barrett L., Mandel L. J. Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell. J Biol Chem. 1981 Oct 25;256(20):10319–10328. [PubMed] [Google Scholar]
  20. Joiner C. H., Lauf P. K. Temperature dependence of active K+ transport in cation dimorphic sheep erythrocytes. Biochim Biophys Acta. 1979 Apr 19;552(3):540–545. doi: 10.1016/0005-2736(79)90199-8. [DOI] [PubMed] [Google Scholar]
  21. KLEINZELLER A., JANACEK K., KNOTKOVA A. A simple method for measuring steady-state ion compartments and rate constants of ion fluxes in tissue slices. Biochim Biophys Acta. 1962 May 7;59:239–241. doi: 10.1016/0006-3002(62)90724-2. [DOI] [PubMed] [Google Scholar]
  22. Kiil F. Renal energy metabolism and regulation of sodium reabsorption. Kidney Int. 1977 Mar;11(3):153–160. doi: 10.1038/ki.1977.23. [DOI] [PubMed] [Google Scholar]
  23. Kinne R., Schwartz I. L. Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes. Kidney Int. 1978 Dec;14(6):547–556. doi: 10.1038/ki.1978.163. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Le Grimellec C., Giocondi M. C., Carrière B., Carrière S., Cardinal J. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am J Physiol. 1982 Mar;242(3):F246–F253. doi: 10.1152/ajprenal.1982.242.3.F246. [DOI] [PubMed] [Google Scholar]
  26. Lee M. P., Gear A. R. The effect of temperature on mitochondrial membrane-linked reactions. J Biol Chem. 1974 Dec 10;249(23):7541–7549. [PubMed] [Google Scholar]
  27. Liu C. C., Frehn J. L., Laporta A. D. Liver and brown fat mitochondrial response to cold in hibernators and nonhibernators. J Appl Physiol. 1969 Jul;27(1):83–89. doi: 10.1152/jappl.1969.27.1.83. [DOI] [PubMed] [Google Scholar]
  28. MUDGE G. H. Electrolyte metabolism of rabbit-kidney slices; studies with radioactive potassium and sodium. Am J Physiol. 1953 Jun;173(3):511–522. doi: 10.1152/ajplegacy.1953.173.3.511. [DOI] [PubMed] [Google Scholar]
  29. MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
  30. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  31. Raison J. K., Lyons J. M., Thomson W. W. The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria. Arch Biochem Biophys. 1971 Jan;142(1):83–90. doi: 10.1016/0003-9861(71)90261-x. [DOI] [PubMed] [Google Scholar]
  32. Sachs G. Ion pumps in the renal tubule. Am J Physiol. 1977 Nov;233(5):F359–F365. doi: 10.1152/ajprenal.1977.233.5.F359. [DOI] [PubMed] [Google Scholar]
  33. Seals J. R., McDonald J. M., Bruns D., Jarett L. A sensitive and precise isotopic assay of ATPase activity. Anal Biochem. 1978 Oct 15;90(2):785–795. doi: 10.1016/0003-2697(78)90169-0. [DOI] [PubMed] [Google Scholar]
  34. Silvius J. R., McElhaney R. N. Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes. J Theor Biol. 1981 Jan 7;88(1):135–152. doi: 10.1016/0022-5193(81)90332-5. [DOI] [PubMed] [Google Scholar]
  35. Soltoff S. P., Mandel L. J. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump. J Gen Physiol. 1984 Oct;84(4):623–642. doi: 10.1085/jgp.84.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Soltoff S. P., Mandel L. J. Active ion transport in the renal proximal tubule. III. The ATP dependence of the Na pump. J Gen Physiol. 1984 Oct;84(4):643–662. doi: 10.1085/jgp.84.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spring K. R., Giebisch G. Kinetics of Na+ transport in Necturus proximal tubule. J Gen Physiol. 1977 Sep;70(3):307–328. doi: 10.1085/jgp.70.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stewart G. W., Ellory J. C., Klein R. A. Increased human red cell cation passive permeability below 12 degrees C. Nature. 1980 Jul 24;286(5771):403–404. doi: 10.1038/286403a0. [DOI] [PubMed] [Google Scholar]
  39. Stroup R. F., Weinman E., Hayslett J. P., Kashgarian M. Effect of luminal permeability on net transport across the amphibian proximal tubule. Am J Physiol. 1974 May;226(5):1110–1116. doi: 10.1152/ajplegacy.1974.226.5.1110. [DOI] [PubMed] [Google Scholar]
  40. TAKENAKA T. Effects of temperature and metabolic inhibitors on the active Na transport in frog skin. Jpn J Physiol. 1963 Apr 15;13:208–218. doi: 10.2170/jjphysiol.13.208. [DOI] [PubMed] [Google Scholar]
  41. THURAU K. Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc Soc Exp Biol Med. 1961 Apr;106:714–717. doi: 10.3181/00379727-106-26451. [DOI] [PubMed] [Google Scholar]
  42. Taniguchi K., Iida S. The effect of phospholipids on the apparent activation energy of (Na+-K+)-ATPase. Biochim Biophys Acta. 1972 Aug 9;274(2):536–541. doi: 10.1016/0005-2736(72)90199-x. [DOI] [PubMed] [Google Scholar]
  43. Torelli G., Milla E., Faelli A., Costantini S. Energy requirement for sodium reabsorption in the in vivo rabbit kidney. Am J Physiol. 1966 Sep;211(3):576–580. doi: 10.1152/ajplegacy.1966.211.3.576. [DOI] [PubMed] [Google Scholar]
  44. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watson K., Bertoli E., Griffiths D. E. Phase transitions in yeast mitochondrial membranes. The effect of temperature on the energies of activation of the respiratory enzymes of Saccharomyces cerevisiae. Biochem J. 1975 Feb;146(2):401–407. doi: 10.1042/bj1460401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Willis J. S. Cold resistance of kidney cells of mammalian hibernators: cation transport vs. respiration. Am J Physiol. 1968 Apr;214(4):923–928. doi: 10.1152/ajplegacy.1968.214.4.923. [DOI] [PubMed] [Google Scholar]
  48. Willis J. S., Ma Li N. Cold resistance of Na- K-ATPase of renal cortex of the hamster, a hibernating mammal. Am J Physiol. 1969 Jul;217(1):321–326. doi: 10.1152/ajplegacy.1969.217.1.321. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES