Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Dec 1;84(6):927–943. doi: 10.1085/jgp.84.6.927

Effect of membrane polarization on contractile threshold and time course of prolonged contractile responses in skeletal muscle fibers

PMCID: PMC2228768  PMID: 6097639

Abstract

Short muscle fibers (less than 1.5 mm) from the m. lumbricalis IV digiti of Rana pipiens were voltage-clamped at -100 mV with a two- microelectrode technique, in normal Ringer's solution containing 10(-6) g/ml tetrodotoxin. The activation curve relating peak tension to membrane potential could be shifted toward more negative or less negative potential values by hyperpolarizing or depolarizing the fiber membrane to -130, -120, or -70 mV, respectively, which indicates that contractile threshold depends on the fiber membrane potential. Long (greater than 5 s) depolarizing (90 mV) pulses induce prolonged contractile responses showing a plateau and a rapid relaxation phase similar to K contractures. Conditioning hyperpolarizations prolong the time course of these responses, while conditioning depolarizations shorten it. The shortening of the response time course, which results in a decrease of the area under the response, is dependent on the amplitude and duration of the conditioning depolarization. Depending on the magnitude and duration, a conditioning depolarization may also reduce peak tension. When the area under the response is reduced by 50%, the level of membrane potential also affects the repriming rate. During repriming, peak tension is restored before the contracture area. Thus, when peak tension is reprimed to 80%, the area is reprimed by 50% of its normal value. Repriming has a marked temperature dependency with a Q10 higher than 4. These results are compatible with the idea that an inactivation process, voltage and time dependent, regulates the release of calcium from the sarcoplasmic reticulum during these responses.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almers W., Best P. M. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J Physiol. 1976 Nov;262(3):583–611. doi: 10.1113/jphysiol.1976.sp011611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Almers W., Palade P. T. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol. 1981 Mar;312:159–176. doi: 10.1113/jphysiol.1981.sp013622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersson K. E., Edman K. A. Effects of lanthanum on potassium contractures of isolated twitch muscle fibres of the frog. Acta Physiol Scand. 1974 Jan;90(1):124–131. doi: 10.1111/j.1748-1716.1974.tb05570.x. [DOI] [PubMed] [Google Scholar]
  5. Caputo C., Bezanilla F., Horowicz P. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study. J Gen Physiol. 1984 Jul;84(1):133–154. doi: 10.1085/jgp.84.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caputo C., Fernandez de Bolaños P. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. J Physiol. 1979 Apr;289:175–189. doi: 10.1113/jphysiol.1979.sp012731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caputo C., Gimenez M. Effects of external calcium deprivation on single muscle fibers. J Gen Physiol. 1967 Oct;50(9):2177–2195. doi: 10.1085/jgp.50.9.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caputo C., Gottschalk G., Lüttgau H. C. The control of contraction activation by the membrane potential. Experientia. 1981 Jun;37(6):580–581. doi: 10.1007/BF01990061. [DOI] [PubMed] [Google Scholar]
  9. Caputo C. The effect of caffeine and tetracaine on the time course of potassium contractures of single muscle fibres. J Physiol. 1976 Feb;255(1):191–207. doi: 10.1113/jphysiol.1976.sp011275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caputo C. The time course of potassium contractures of single muscle fibres. J Physiol. 1972 Jun;223(2):483–505. doi: 10.1113/jphysiol.1972.sp009859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Costantin L. L. Contractile activation in frog skeletal muscle. J Gen Physiol. 1974 Jun;63(6):657–674. doi: 10.1085/jgp.63.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dulhunty A. F. Effects of membrane potential on mechanical activation in skeletal muscle. J Gen Physiol. 1982 Feb;79(2):233–251. doi: 10.1085/jgp.79.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dörrscheidt-Käfer M. Comparison of the action of La3+ and Ca2+ on contraction threshold and other membrane parameters of frog skeletal muscle. J Membr Biol. 1981;62(1-2):95–103. doi: 10.1007/BF01870203. [DOI] [PubMed] [Google Scholar]
  15. Dörrscheidt-Käfer M. The action of Ca2+ , Mg2+ and H+ on the contraction threshold of frog skeletal muscle: Evidence for surface charges controlling electro-mechanical coupling. Pflugers Arch. 1976 Mar 11;362(1):33–41. doi: 10.1007/BF00588678. [DOI] [PubMed] [Google Scholar]
  16. Frankenhaeuser B., Lännergren J. The effect of calcium on the mechanical response of single twitch muscle fibres of Xenopus laevis. Acta Physiol Scand. 1967 Mar;69(3):242–254. doi: 10.1111/j.1748-1716.1967.tb03518.x. [DOI] [PubMed] [Google Scholar]
  17. Gonzalez-Serratos H., Valle-Aguilera R., Lathrop D. A., Garcia M. C. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature. 1982 Jul 15;298(5871):292–294. doi: 10.1038/298292a0. [DOI] [PubMed] [Google Scholar]
  18. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heistracher P., Hunt C. C. Contractile repriming in snake twitch muscle fibres. J Physiol. 1969 May;201(3):613–626. doi: 10.1113/jphysiol.1969.sp008775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heistracher P., Hunt C. C. The effect of procaine on snake twitch muscle fibres. J Physiol. 1969 May;201(3):627–638. doi: 10.1113/jphysiol.1969.sp008776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heistracher P., Hunt C. C. The relation of membrane changes ot contraction in twitch muscle fibres. J Physiol. 1969 May;201(3):589–611. doi: 10.1113/jphysiol.1969.sp008774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Horowicz P., Schneider M. F. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J Physiol. 1981 May;314:595–633. doi: 10.1113/jphysiol.1981.sp013726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang C. L. Pharmacological separation of charge movement components in frog skeletal muscle. J Physiol. 1982 Mar;324:375–387. doi: 10.1113/jphysiol.1982.sp014118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hui C. S. Pharmacological dissection of charge movement in frog skeletal muscle fibers. Biophys J. 1982 Jul;39(1):119–122. doi: 10.1016/S0006-3495(82)84498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lüttgau H. C., Oetliker H. The action of caffeine on the activation of the contractile mechanism in straited muscle fibres. J Physiol. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miledi R., Nakajima S., Parker I., Takahashi T. Effects of membrane polarization on sarcoplasmic calcium release in skeletal muscle. Proc R Soc Lond B Biol Sci. 1981 Sep 17;213(1190):1–13. doi: 10.1098/rspb.1981.0049. [DOI] [PubMed] [Google Scholar]
  27. Sanchez J. A., Stefani E. Inward calcium current in twitch muscle fibres of the frog. J Physiol. 1978 Oct;283:197–209. doi: 10.1113/jphysiol.1978.sp012496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  29. Schneider M. F. Membrane charge movement and depolarization-contraction coupling. Annu Rev Physiol. 1981;43:507–517. doi: 10.1146/annurev.ph.43.030181.002451. [DOI] [PubMed] [Google Scholar]
  30. Vergara J., Caputo C. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1477–1481. doi: 10.1073/pnas.80.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES