Abstract
Previously we tested the validity of the one-dimensional diffusion equation for O2 in the excised frog sartorius muscle and used it to measure the diffusion coefficient (D) for O2 in this muscle and the time course of its rate of O2 consumption (Qo2) after a tetanus (Mahler, 1978, 1979, J. Gen. Physiol., 71:533-557, 559-580, 73:159- 174). A transverse section of the frog sartorius is in fact well fit by a hemi-ellipse with width divided by maximum thickness averaging 5.1 +/- 0.2. Using the previous techniques with the two-dimensional diffusion equation and this hemi-elliptical boundary yields a value for D that is 30% smaller than reported previously; the revised values at 0, 10, and 22.8 degrees C are 6.2, 7.9, and 10.8 X 10(-6) cm2/s, respectively. After a tetanus at 20 degrees C, Qo2 rose quickly to a peak and then declined exponentially, with a time constant (tau) approximately 15% faster than that reported previously; tau averaged 2.1 min in Rana temporaria and 2.6 min in Rana pipiens. A technique was devised to measure the solubility (alpha) of O2 in intact, respiring muscles, and yielded alpha (muscle)/alpha (H2O) = 1.26 +/- 0.04. With these modifications, the values for O2 consumption obtained with the diffusion method were in agreement with those measured by the direct method of Kushmerick and Paul (1976, J. Physiol. [Lond.]., 254:693- 709). Using results from both methods, at 20 degrees C the ratio of phosphorylcreatine split during a tetanus to O2 consumption during recovery ranged from 5.2 to 6.2 mumol/mumol, and postcontractile ATP hydrolysis was estimated to be 13.6 +/- 4.1 (n = 3) nmol/mumol total creatine.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Battino R., Evans F. D., Danforth W. F. The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc. 1968 Dec;45(12):830–833. doi: 10.1007/BF02540163. [DOI] [PubMed] [Google Scholar]
- Canfield P., Lebacq J., MARECHAL G. Energy balance in frog sartorius muscle during an isometric tetanus at 20 degrees C. J Physiol. 1973 Aug;232(3):467–483. doi: 10.1113/jphysiol.1973.sp010281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carles A. C., Kawashiro T., Piiper J. Solubility of various inert gases in rat skeletal muscle. Pflugers Arch. 1975 Sep 9;359(3):209–218. doi: 10.1007/BF00587380. [DOI] [PubMed] [Google Scholar]
- Carlson F. D., Hardy D., Wilkie D. R. The relation between heat produced and phosphorylcreatine split during isometric contraction of frog's muscle. J Physiol. 1967 Apr;189(2):209–235. doi: 10.1113/jphysiol.1967.sp008164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtin N. A., Woledge R. C. Chemical change and energy production during contraction of frog muscle: how are their time courses related? J Physiol. 1979 Mar;288:353–366. [PMC free article] [PubMed] [Google Scholar]
- Curtin N. A., Woledge R. C. Energy changes and muscular contraction. Physiol Rev. 1978 Jul;58(3):690–761. doi: 10.1152/physrev.1978.58.3.690. [DOI] [PubMed] [Google Scholar]
- DeFuria R. R., Kushmerick M. J. ATP utilization associated with recovery metabolism in anaerobic frog muscle. Am J Physiol. 1977 Jan;232(1):C30–C36. doi: 10.1152/ajpcell.1977.232.1.C30. [DOI] [PubMed] [Google Scholar]
- Eftink M. R., Jameson D. M. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry. Biochemistry. 1982 Aug 31;21(18):4443–4449. doi: 10.1021/bi00261a039. [DOI] [PubMed] [Google Scholar]
- Ellsworth M. L., Pittman R. N. Heterogeneity of oxygen diffusion through hamster striated muscles. Am J Physiol. 1984 Feb;246(2 Pt 2):H161–H167. doi: 10.1152/ajpheart.1984.246.2.H161. [DOI] [PubMed] [Google Scholar]
- Gore R. W., Whalen W. J. Relations among tissue PO2, QO2, and resting heat production of frog sartorius muscle. Am J Physiol. 1968 Feb;214(2):277–286. doi: 10.1152/ajplegacy.1968.214.2.277. [DOI] [PubMed] [Google Scholar]
- HOHORST H. J., REIM M., BARTELS H. Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem Biophys Res Commun. 1962 Apr 3;7:142–146. doi: 10.1016/0006-291x(62)90163-8. [DOI] [PubMed] [Google Scholar]
- Hill D. K. The time course of evolution of oxidative recovery heat of frog's muscle. J Physiol. 1940 Sep 14;98(4):454–459. doi: 10.1113/jphysiol.1940.sp003863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. K. The time course of the oxygen consumption of stimulated frog's muscle. J Physiol. 1940 May 14;98(2):207–227. doi: 10.1113/jphysiol.1940.sp003845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Kean C. J. Skeletal muscle energetics and metabolism. Annu Rev Physiol. 1978;40:93–131. doi: 10.1146/annurev.ph.40.030178.000521. [DOI] [PubMed] [Google Scholar]
- Homsher E., Kean C. J., Wallner A., Garibian-Sarian V. The time-course of energy balance in an isometric tetanus. J Gen Physiol. 1979 May;73(5):553–567. doi: 10.1085/jgp.73.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Mommaerts W. F., Ricchiuti N. V., Wallner A. Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol. 1972 Feb;220(3):601–625. doi: 10.1113/jphysiol.1972.sp009725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Rall J. A., Wallner A., Ricchiuti N. V. Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions. J Gen Physiol. 1975 Jan;65(1):1–21. doi: 10.1085/jgp.65.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawashiro T., Nüsse W., Scheid P. Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: results in rat skeletal muscle. Pflugers Arch. 1975 Sep 9;359(3):231–251. doi: 10.1007/BF00587382. [DOI] [PubMed] [Google Scholar]
- Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol. 1919 May 20;52(6):391–408. doi: 10.1113/jphysiol.1919.sp001838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushmerick M. J., Paul R. J. Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0 degrees C. J Physiol. 1976 Jan;254(3):693–709. doi: 10.1113/jphysiol.1976.sp011253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushmerick M. J., Paul R. J. Relationship between initial chemical reactions and oxidative recovery metabolism for single isometric contractions of frog sartorius at 0 degrees C. J Physiol. 1976 Jan;254(3):711–727. doi: 10.1113/jphysiol.1976.sp011254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakowicz J. R., Maliwal B. P. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem. 1983 Apr 25;258(8):4794–4801. [PubMed] [Google Scholar]
- Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler M. First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. J Gen Physiol. 1985 Jul;86(1):135–165. doi: 10.1085/jgp.86.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler M. Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20 degrees C. J Gen Physiol. 1978 May;71(5):559–580. doi: 10.1085/jgp.71.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler M. The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20 degrees C. J Gen Physiol. 1979 Feb;73(2):159–174. doi: 10.1085/jgp.73.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Takahashi G. H., Fatt I., Goldstick T. K. Oxygen consumption rate of tissue measured by a micropolarographic method. J Gen Physiol. 1966 Nov;50(2):317–335. doi: 10.1085/jgp.50.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsacopoulos M., Poitry S., Borsellino A. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol. 1981 Jun;77(6):601–628. doi: 10.1085/jgp.77.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Koning J., Hoofd L. J., Kreuzer F. Oxygen transport and the function of myoglobin. Theoretical model and experiments in chicken gizzard smooth muscle. Pflugers Arch. 1981 Mar;389(3):211–217. doi: 10.1007/BF00584781. [DOI] [PubMed] [Google Scholar]