Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1986 Jul 1;88(1):83–105. doi: 10.1085/jgp.88.1.83

Calcium channel currents in pars intermedia cells of the rat pituitary gland. Kinetic properties and washout during intracellular dialysis

PMCID: PMC2228786  PMID: 2426390

Abstract

Ca channel currents in primary cultured pars intermedia cells were studied using whole-cell recording with patch pipettes. Experiments were carried out at 18-21 degrees C in cells internally dialyzed with K- free, EGTA-containing solutions and in the presence of 10 mM Ca or 10 mM Ba in the external solution. Ca and Ba currents depended on the activity of two main populations of channels, SD and FD. With Ca as the charge carrier, these two populations differed in their closing time constants at -80 mV (SD, 1.8 ms; FD, 110 microseconds), apparent activation levels (SD, -40 mV; FD, -5 mV), half-maximal activation levels (SD, +5 to +10 mV; FD, +20 to +25 mV), half-times of activation at +20 mV (SD, 2.5-3.5 ms; FD, 1.0-1.3 ms), and time courses of inactivation (SD, fast; FD, slow). Functional FD channels were almost completely lost within 20-25 min of breaking into a cell, whereas SD channels retained most of their functional activity. In addition, the conductance-voltage curve for FD channels shifted approximately 15 mV toward more negative membrane potentials within 11-14 min under whole- cell recording. At that time, 60-70% of the FD channel maximum conductance was lost. However, the conductance-voltage curve for SD channels shifted less than 5 mV within 25 min. The addition of 3 mM MgATP and 40 microM GTP to the internal solution slowed down the loss of FD channels and prevented the shift in their activation curve. It was also found that the amplitude of the current carried by FD channels tends to increase as a function of the age of the culture, with no obvious changes in the kinetic properties of the channels or in SD channel activity.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Matteson D. R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science. 1985 Jan 4;227(4682):65–67. doi: 10.1126/science.2578071. [DOI] [PubMed] [Google Scholar]
  2. Bean B. P. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985 Jul;86(1):1–30. doi: 10.1085/jgp.86.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Jonathan N., Peleg E., Hoefer M. T. Optimization of culture conditions for short-term pituitary cell culture. Methods Enzymol. 1983;103:249–257. doi: 10.1016/s0076-6879(83)03016-5. [DOI] [PubMed] [Google Scholar]
  4. Berkenbosch F., Tilders F. J., Vermes I. Beta-adrenoceptor activation mediates stress-induced secretion of beta-endorphin-related peptides from intermediate but not anterior pituitary. Nature. 1983 Sep 15;305(5931):237–239. doi: 10.1038/305237a0. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  6. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bower A., Hadley M. E., Hruby V. J. Biogenic amines and control of melanophore stimulating hormone release. Science. 1974 Apr 5;184(4132):70–72. doi: 10.1126/science.184.4132.70. [DOI] [PubMed] [Google Scholar]
  8. Byerly L., Hagiwara S. Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis. J Physiol. 1982 Jan;322:503–528. doi: 10.1113/jphysiol.1982.sp014052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byerly L., Moody W. J. Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jul;352:637–652. doi: 10.1113/jphysiol.1984.sp015314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Byerly L., Yazejian B. Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol. 1986 Jan;370:631–650. doi: 10.1113/jphysiol.1986.sp015955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cahalan M. D., Chandy K. G., DeCoursey T. E., Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol. 1985 Jan;358:197–237. doi: 10.1113/jphysiol.1985.sp015548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carbone E., Lux H. D. A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J. 1984 Sep;46(3):413–418. doi: 10.1016/S0006-3495(84)84037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cote T., Munemura M., Eskay R. L., Kebabian J. W. Biochemical identification of the beta-adrenoceptor and evidence for the involvement of an adenosine 3',5'-monophosphate system in the beta-adrenergically induced release of alph-melanocyte-stimulating hormone in the intermediate lobe of the rat pituitary gland. Endocrinology. 1980 Jul;107(1):108–116. doi: 10.1210/endo-107-1-108. [DOI] [PubMed] [Google Scholar]
  14. Deitmer J. W. Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol. 1984 Oct;355:137–159. doi: 10.1113/jphysiol.1984.sp015411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doroshenko P. A., Kostyuk P. G., Martynyuk A. E. Intracellular metabolism of adenosine 3',5'-cyclic monophosphate and calcium inward current in perfused neurones of Helix pomatia. Neuroscience. 1982;7(9):2125–2134. doi: 10.1016/0306-4522(82)90124-5. [DOI] [PubMed] [Google Scholar]
  16. Doroshenko P. A., Kostyuk P. G., Martynyuk A. E., Kursky M. D., Vorobetz Z. D. Intracellular protein kinase and calcium inward currents in perfused neurones of the snail Helix pomatia. Neuroscience. 1984 Jan;11(1):263–267. doi: 10.1016/0306-4522(84)90229-x. [DOI] [PubMed] [Google Scholar]
  17. Douglas W. W., Taraskevich P. S. Action potentials in gland cells of rat pituitary pars intermedia: inhibition by dopamine, an inhibitor of MSH secretion. J Physiol. 1978 Dec;285:171–184. doi: 10.1113/jphysiol.1978.sp012565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Douglas W. W., Taraskevich P. S. Calcium component to action potentials in rat pars intermedia cells. J Physiol. 1980 Dec;309:623–630. doi: 10.1113/jphysiol.1980.sp013530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Douglas W. W., Taraskevich P. S. Slowing effects of dopamine and calcium-channel blockers on frequency of sodium spikes in rat pars intermedia cells. J Physiol. 1982 May;326:201–211. doi: 10.1113/jphysiol.1982.sp014186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dubinsky J. M., Oxford G. S. Ionic currents in two strains of rat anterior pituitary tumor cells. J Gen Physiol. 1984 Mar;83(3):309–339. doi: 10.1085/jgp.83.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
  22. Fedulova S. A., Kostyuk P. G., Veselovsky N. S. Calcium channels in the somatic membrane of the rat dorsal root ganglion neurons, effect of cAMP. Brain Res. 1981 Jun 9;214(1):210–214. doi: 10.1016/0006-8993(81)90457-1. [DOI] [PubMed] [Google Scholar]
  23. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fernandez J. M., Fox A. P., Krasne S. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol. 1984 Nov;356:565–585. doi: 10.1113/jphysiol.1984.sp015483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fox A. P., Krasne S. Two calcium currents in Neanthes arenaceodentatus egg cell membranes. J Physiol. 1984 Nov;356:491–505. doi: 10.1113/jphysiol.1984.sp015479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  28. Goldman M. E., Beaulieu M., Kebabian J. W., Eskay R. L. alpha-Melanocyte-stimulating hormone-like peptides in the intermediate lobe of the rat pituitary gland: characterization of content and release in vitro. Endocrinology. 1983 Feb;112(2):435–441. doi: 10.1210/endo-112-2-435. [DOI] [PubMed] [Google Scholar]
  29. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hagiwara S., Ohmori H. Studies of single calcium channel currents in rat clonal pituitary cells. J Physiol. 1983 Mar;336:649–661. doi: 10.1113/jphysiol.1983.sp014603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hagiwara S., Ozawa S., Sand O. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol. 1975 May;65(5):617–644. doi: 10.1085/jgp.65.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  33. Israel J. M., Denef C., Vincent J. D. Electrophysiological properties of normal somatotrophs in culture. An intracellular study. Neuroendocrinology. 1983 Sep;37(3):193–199. doi: 10.1159/000123542. [DOI] [PubMed] [Google Scholar]
  34. Jackson S., Lowry P. J. Secretion of pro-opiocortin peptides from isolated perfused rat pars intermedia cells. Neuroendocrinology. 1983 Oct;37(4):248–257. doi: 10.1159/000123553. [DOI] [PubMed] [Google Scholar]
  35. Kostyuk P. G. Metabolic control of ionic channels in the neuronal membrane. Neuroscience. 1984 Dec;13(4):983–989. doi: 10.1016/0306-4522(84)90282-3. [DOI] [PubMed] [Google Scholar]
  36. Kraicer J., Gajewski T. C., Moor B. C. Release of pro-opiomelanocortin-derived peptides from the pars intermedia and pars distalis of the rat pituitary: effect of corticotrophin-releasing factor and somatostatin. Neuroendocrinology. 1985 Nov;41(5):363–373. doi: 10.1159/000124203. [DOI] [PubMed] [Google Scholar]
  37. Levitan I. B. Phosphorylation of ion channels. J Membr Biol. 1985;87(3):177–190. doi: 10.1007/BF01871217. [DOI] [PubMed] [Google Scholar]
  38. Llinás R., Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981 Jun;315:549–567. doi: 10.1113/jphysiol.1981.sp013763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Llinás R., Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981 Jun;315:569–584. doi: 10.1113/jphysiol.1981.sp013764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Martin R., Weber E., Voigt K. H. Localization of corticotropin- and endorphin-related peptides in the intermediate lobe of the rat pituitary. Cell Tissue Res. 1979 Feb 15;196(2):307–319. doi: 10.1007/BF00240104. [DOI] [PubMed] [Google Scholar]
  41. Mason W. T., Waring D. W. Electrophysiological recordings from gonadotrophs. Evidence for Ca2+ channels mediated by gonadotrophin-releasing hormone. Neuroendocrinology. 1985 Sep;41(3):258–268. doi: 10.1159/000124186. [DOI] [PubMed] [Google Scholar]
  42. Matteson D. R., Armstrong C. M. Na and Ca channels in a transformed line of anterior pituitary cells. J Gen Physiol. 1984 Mar;83(3):371–394. doi: 10.1085/jgp.83.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Meunier H., Lefèvre G., Dumont D., Labrie F. CRF stimulates alpha-MSH secretion and cyclic AMP accumulation in rat pars intermedia cells. Life Sci. 1982 Nov 8;31(19):2129–2135. doi: 10.1016/0024-3205(82)90105-9. [DOI] [PubMed] [Google Scholar]
  44. Millan M. J., Herz A. The endocrinology of the opioids. Int Rev Neurobiol. 1985;26:1–83. doi: 10.1016/s0074-7742(08)60072-0. [DOI] [PubMed] [Google Scholar]
  45. Munemura M., Eskay R. L., Kebabian J. W. Release of alpha-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: involvement of catecholamines and adenosine 3',5'-monophosphate. Endocrinology. 1980 Jun;106(6):1795–1803. doi: 10.1210/endo-106-6-1795. [DOI] [PubMed] [Google Scholar]
  46. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  47. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  48. O'Donohue T. L., Dorsa D. M. The opiomelanotropinergic neuronal and endocrine systems. Peptides. 1982 May-Jun;3(3):353–395. doi: 10.1016/0196-9781(82)90098-5. [DOI] [PubMed] [Google Scholar]
  49. Ozawa S., Sand O. Electric activity of rat anterior pituitary cells in vitro. Acta Physiol Scand. 1978 Mar;102(3):330–341. doi: 10.1111/j.1748-1716.1978.tb06080.x. [DOI] [PubMed] [Google Scholar]
  50. Reuter H., Stevens C. F., Tsien R. W., Yellen G. Properties of single calcium channels in cardiac cell culture. Nature. 1982 Jun 10;297(5866):501–504. doi: 10.1038/297501a0. [DOI] [PubMed] [Google Scholar]
  51. Taraskevich P. S., Douglas W. W. Action potentials occur in cells of the normal anterior pituitary gland and are stimulated by the hypophysiotropic peptide thyrotropin-releasing hormone. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4064–4067. doi: 10.1073/pnas.74.9.4064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tilders F. J., Post M., Jackson S., Lowry P. J., Smelik P. G. beta-Adrenergic stimulation of the release of ACTH- and LPH-related peptides from the pars intermedia of the rat pituitary gland. Acta Endocrinol (Copenh) 1981 Jul;97(3):343–351. doi: 10.1530/acta.0.0970343. [DOI] [PubMed] [Google Scholar]
  53. Tilders F. J., van der Woude H. A., Swaab D. F., Mulder A. H. Identification of MSH release-inhibiting elements in the neurointermediate lobe of the rat. Brain Res. 1979 Aug 10;171(3):425–435. doi: 10.1016/0006-8993(79)91047-3. [DOI] [PubMed] [Google Scholar]
  54. Tomiko S. A., Taraskevich P. S., Douglas W. W. Effects of veratridine, tetrodotoxin and other drugs that alter electrical behaviour on secretion of melanocyte-stimulating hormone from melanotrophs of the pituitary pars intermedia. Neuroscience. 1984 Aug;12(4):1223–1228. doi: 10.1016/0306-4522(84)90016-2. [DOI] [PubMed] [Google Scholar]
  55. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  56. Tsuruta K., Grewe C. W., Cote T. E., Eskay R. L., Kebabian J. W. Coordinated action of calcium ion and adenosine 3',5'-monophosphate upon the release of alpha-melanocyte-stimulating hormone from the intermediate lobe of the rat pituitary gland. Endocrinology. 1982 Apr;110(4):1133–1140. doi: 10.1210/endo-110-4-1133. [DOI] [PubMed] [Google Scholar]
  57. Weiner R. I., Bethea C. L., Jaquet P., Ramsdell J. S., Gospodarowicz D. J. Culture of dispersed anterior pituitary cells on extracellular matrix. Methods Enzymol. 1983;103:287–293. doi: 10.1016/s0076-6879(83)03018-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES