Abstract
Amphiuma red cells were incubated for several hours in hypotonic or hypertonic media. They regulate their volume in both media by using ouabain-insensitive salt transport mechanisms. After initially enlarging osmotically, cells in hypotonic media return toward their original size by losing K, Cl, and H2O. During this volume-regulatory decrease (VRD) response, K loss results from a greater than 10-fold increase in K efflux. Cells in hypertonic media initially shrink osmotically, but then return toward their original volume by gaining Na, Cl, and H2O. The volume-regulatory increase (VRI) response involves a large (greater than 100-fold) increase in Na uptake that is entirely blocked by the diuretic amiloride (10(-3) M). Na transport in the VRI response shares many of the characteristics of amiloride-sensitive transport in epithelia: (a) amiloride inhibition is reversible; (b) removal of amiloride from cells pretreated with amiloride enhances Na uptake relative to untreated controls; (c) amiloride appears to act as a competitive inhibitor (Ki = 1-3 microM) of Na uptake; (d) Na uptake is a saturable function of external Na (Km approximately 29 mM); (e) Li can substitute for Na but K cannot. Anomalous Na/K pump behavior is observed in both the VRD and the VRI responses. In the VRD response, pump activity increases 3-fold despite a decrease in intracellular Na concentration, while in the VRI response, a 10-fold increase in pump activity is observed when only a doubling is predicted from increases in intracellular Na.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aceves J., Cereijido M. The effect of amiloride on sodium and potassium fluxes in red cells. J Physiol. 1973 Mar;229(3):709–718. doi: 10.1113/jphysiol.1973.sp010162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
- Benos D. J., Mandel L. J., Balaban R. S. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol. 1979 Mar;73(3):307–326. doi: 10.1085/jgp.73.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cala P. M. Volume regulation by flounder red blood cells in anisotonic media. J Gen Physiol. 1977 May;69(5):537–552. doi: 10.1085/jgp.69.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbert A. W., Shum W. K. Does intracellular sodium modify membrane permeability to sodium ions? Nature. 1977 Mar 31;266(5601):468–469. doi: 10.1038/266468a0. [DOI] [PubMed] [Google Scholar]
- DICK D. A., LOWENSTEIN L. M. Osmotic equilibria in human erythrocytes studied by immersion refractometry. Proc R Soc Lond B Biol Sci. 1958 Feb 18;148(931):241–256. doi: 10.1098/rspb.1958.0016. [DOI] [PubMed] [Google Scholar]
- Dalmark M. Chloride and water distribution in human red cells. J Physiol. 1975 Aug;250(1):65–84. doi: 10.1113/jphysiol.1975.sp011043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich E. N., Crabbé J. The mechanism of action of amipramizide. Pflugers Arch. 1968;302(1):79–96. doi: 10.1007/BF00586783. [DOI] [PubMed] [Google Scholar]
- Ericson A. C., Spring K. R. Volume regulation by Necturus gallbladder: apical Na+-H+ and Cl(-)-HCO-3 exchange. Am J Physiol. 1982 Sep;243(3):C146–C150. doi: 10.1152/ajpcell.1982.243.3.C146. [DOI] [PubMed] [Google Scholar]
- Erlij D., Smith M. W. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J Physiol. 1973 Jan;228(1):221–239. doi: 10.1113/jphysiol.1973.sp010083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLYNN F., MAIZELS M. Cation control in human erythrocytes. J Physiol. 1949 Dec;110(3-4):301–318. doi: 10.1113/jphysiol.1949.sp004440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freedman J. C., Hoffman J. F. Ionic and osmotic equilibria of human red blood cells treated with nystatin. J Gen Physiol. 1979 Aug;74(2):157–185. doi: 10.1085/jgp.74.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs W., Larsen E. H., Lindemann B. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol. 1977 May;267(1):137–166. doi: 10.1113/jphysiol.1977.sp011805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fugelli K. Regulation of cell volume in flounder (Pleuronectes flesus) erythrocytes accompanying a decrease in plasma osmolarity. Comp Biochem Physiol. 1967 Jul;22(1):253–260. doi: 10.1016/0010-406x(67)90185-5. [DOI] [PubMed] [Google Scholar]
- Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwald L. E., Kirschner L. B. The effect of poly-L-lysine, amiloride and methyl-L-lysine on gill ion transport and permeability in the rainbow trout. J Membr Biol. 1976 May;26(4):371–383. doi: 10.1007/BF01868884. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Clarke C. A., Rothstein A. Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J Gen Physiol. 1983 Nov;82(5):619–638. doi: 10.1085/jgp.82.5.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
- Haas M., Schmidt W. F., 3rd, McManus T. J. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol. 1982 Jul;80(1):125–147. doi: 10.1085/jgp.80.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrera F. C. Inhibition of lithium transport across toad bladder by amiloride. Am J Physiol. 1972 Feb;222(2):499–502. doi: 10.1152/ajplegacy.1972.222.2.499. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F., Kaplan J. H., Callahan T. J. The Na:K pump in red cells is electrogenic. Fed Proc. 1979 Oct;38(11):2440–2441. [PubMed] [Google Scholar]
- Kinsella J. L., Aronson P. S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1981 Oct;241(4):F374–F379. doi: 10.1152/ajprenal.1981.241.4.F374. [DOI] [PubMed] [Google Scholar]
- Knott G. D. Mlab--a mathematical modeling tool. Comput Programs Biomed. 1979 Dec;10(3):271–280. doi: 10.1016/0010-468x(79)90075-8. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M., Caryk T., Siebens A. W. Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange. J Gen Physiol. 1985 Oct;86(4):565–584. doi: 10.1085/jgp.86.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M., Robbie D. E., Orloff J. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am J Physiol. 1976 Aug;231(2):306–311. doi: 10.1152/ajplegacy.1976.231.2.306. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):396–412. doi: 10.1085/jgp.58.4.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media. J Gen Physiol. 1973 Apr;61(4):509–527. doi: 10.1085/jgp.61.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LINDLEY B. D., HOSHIKO T. THE EFFECTS OF ALKALI METAL CATIONS AND COMMON ANIONS ON THE FROG SKIN POTENTIAL. J Gen Physiol. 1964 Mar;47:749–771. doi: 10.1085/jgp.47.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol. 1976 Aug 27;28(1):41–70. doi: 10.1007/BF01869690. [DOI] [PubMed] [Google Scholar]
- Lipton P. Effect of changes in osmolarity on sodium transport across isolated toad bladder. Am J Physiol. 1972 Apr;222(4):821–828. doi: 10.1152/ajplegacy.1972.222.4.821. [DOI] [PubMed] [Google Scholar]
- MCCONAGHEY P. D., MAIZELS M. The osmotic coefficients of haemoglobin in red cells under varying conditions. J Physiol. 1961 Jan;155:28–45. doi: 10.1113/jphysiol.1961.sp006611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. T., Blaustein M. P. Properties of sodium pumps in internally perfused barnacle muscle fibers. J Gen Physiol. 1980 Feb;75(2):183–206. doi: 10.1085/jgp.75.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORSKOV S. L. Experiments on the influence of adrenaline and noradrenaline on the potassium absorption of red blood cells from pigeons and frogs. Acta Physiol Scand. 1956 Nov 5;37(4):299–306. doi: 10.1111/j.1748-1716.1956.tb01365.x. [DOI] [PubMed] [Google Scholar]
- ORSKOV S. L. Experiments on the potassium absorption of the erythrocytes of Rana esculenta and Rana temporaria after bleeding and in hypertonic plasma. Acta Physiol Scand. 1956 Nov 5;37(4):295–298. doi: 10.1111/j.1748-1716.1956.tb01364.x. [DOI] [PubMed] [Google Scholar]
- POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
- Palfrey H. C., Greengard P. Hormone-sensitive ion transport systems in erythrocytes as models for epithelial ion pathways. Ann N Y Acad Sci. 1981;372:291–308. doi: 10.1111/j.1749-6632.1981.tb15482.x. [DOI] [PubMed] [Google Scholar]
- Parker J. C., Castranova V. Volume-responsive sodium and proton movements in dog red blood cells. J Gen Physiol. 1984 Sep;84(3):379–401. doi: 10.1085/jgp.84.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker J. C. Dog red blood cells. Adjustment of salt and water content in vitro. J Gen Physiol. 1973 Aug;62(2):147–156. doi: 10.1085/jgp.62.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker J. C., Gitelman H. J., Glosson P. S., Leonard D. L. Role of calcium in volume regulation by dog red blood cells. J Gen Physiol. 1975 Jan;65(1):84–96. doi: 10.1085/jgp.65.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker J. C. Volume-responsive sodium movements in dog red blood cells. Am J Physiol. 1983 May;244(5):C324–C330. doi: 10.1152/ajpcell.1983.244.5.C324. [DOI] [PubMed] [Google Scholar]
- Pollack L. R., Tate E. H., Cook J. S. Turnover and regulation of Na-K-ATPase in HeLa cells. Am J Physiol. 1981 Nov;241(5):C173–C183. doi: 10.1152/ajpcell.1981.241.5.C173. [DOI] [PubMed] [Google Scholar]
- Riddick D. H., Kregenow F. M., Orloff J. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. J Gen Physiol. 1971 Jun;57(6):752–766. doi: 10.1085/jgp.57.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rindler M. J., Taub M., Saier M. H., Jr Uptake of 22Na+ by cultured dog kidney cells (MDCK). J Biol Chem. 1979 Nov 25;254(22):11431–11439. [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J Gen Physiol. 1977 Jul;70(1):99–121. doi: 10.1085/jgp.70.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Frizzell R. A., Nellans H. N. Active sodium transport and the electrophysiology of rabbit colon. J Membr Biol. 1977 May 12;33(3-4):351–384. doi: 10.1007/BF01869524. [DOI] [PubMed] [Google Scholar]
- Spring K. R., Ericson A. C. Epithelial cell volume modulation and regulation. J Membr Biol. 1982;69(3):167–176. doi: 10.1007/BF01870396. [DOI] [PubMed] [Google Scholar]
- Stoner L. C., Kregenow F. M. A single-cell technique for the measurement of membrane potential, membrane conductance, and the efflux of rapidly penetrating solutes in Amphiuma erythrocytes. J Gen Physiol. 1980 Oct;76(4):455–478. doi: 10.1085/jgp.76.4.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sudou K., Hoshi T. Mode of action of amiloride in toad urinary bladder. An electrophysiological study of the drug action on sodium permeability of the mucosal border. J Membr Biol. 1977 Apr 7;32(1-2):115–132. doi: 10.1007/BF01905212. [DOI] [PubMed] [Google Scholar]
- TOSTESON D. C., CARLSEN E., DUNHAM E. T. The effects of sickling on ion transport. I. Effect of sickling on potassium transport. J Gen Physiol. 1955 Sep 20;39(1):31–53. doi: 10.1085/jgp.39.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
- ØRSKOV S. L. The potassium absorption by pigeon blood cells; a considerable potassium absorption by pigeon- and hen blood cells in observed when a hypertonic sodium chloride solution is added. Acta Physiol Scand. 1954 Jul 18;31(2-3):221–229. doi: 10.1111/j.1748-1716.1954.tb01133.x. [DOI] [PubMed] [Google Scholar]