Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1960 May;46(5):608–616. doi: 10.1073/pnas.46.5.608

EVIDENCE FOR A VICINAL DITHIOL IN OXIDATIVE PHOSPHORYLATION

Arvan Fluharty 1,2, D R Sanadi 1,2
PMCID: PMC222882  PMID: 16590648

Full text

PDF
608

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  2. CALVIN M., MASSINI P. The path of carbon in photosynthesis. XX. The steady state. Experientia. 1952 Dec 15;8(12):445–457. doi: 10.1007/BF02139287. [DOI] [PubMed] [Google Scholar]
  3. CHIGA M., PLAUT G. W. An enzyme system from mitochondria catalyzing adenosine diphosphate-adenosine triphosphate and orthophosphate-adenosine triphosphate exchange reactions. J Biol Chem. 1959 Nov;234:3059–3066. [PubMed] [Google Scholar]
  4. CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
  5. HUNTER F. E., Jr, FORD L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem. 1955 Sep;216(1):357–369. [PubMed] [Google Scholar]
  6. Isenberg I., Szent-Györgyi A. FREE RADICAL FORMATION IN RIBOFLAVIN COMPLEXES. Proc Natl Acad Sci U S A. 1958 Sep 15;44(9):857–862. doi: 10.1073/pnas.44.9.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Isenberg I., Szent-Györgyi A. ON CHARGE TRANSFER COMPLEXES BETWEEN SUBSTANCES OF BIOCHEMICAL INTEREST. Proc Natl Acad Sci U S A. 1959 Aug;45(8):1229–1231. doi: 10.1073/pnas.45.8.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
  9. LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
  10. MACKLER B., MAHLER H. R., GREEN D. E. Studies on metalloflavoproteins. I. Xanthine oxidase, a molybdoflavoprotein. J Biol Chem. 1954 Sep;210(1):149–164. [PubMed] [Google Scholar]
  11. MAHLER H. R., MACKLER B., GREEN D. E. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J Biol Chem. 1954 Sep;210(1):465–480. [PubMed] [Google Scholar]
  12. PLAUT G. W. A soluble enzyme from mitochondria catalyzing an exchange between inorganic phosphate and adenosine triphosphate. Arch Biochem Biophys. 1957 Jul;69:320–333. doi: 10.1016/0003-9861(57)90498-8. [DOI] [PubMed] [Google Scholar]
  13. REED L. J. Metabolic functions of thiamine and lipoic acid. Physiol Rev. 1953 Oct;33(4):544–559. doi: 10.1152/physrev.1953.33.4.544. [DOI] [PubMed] [Google Scholar]
  14. SANADI D. R., LANGLEY M., WHITE F. alpha-Ketoglutaric dehydrogenase. VII. The role of thioctic acid. J Biol Chem. 1959 Jan;234(1):183–187. [PubMed] [Google Scholar]
  15. SWANSON M. A. Studies on the non-oxidative exchange between inorganic phosphate and ATP, as catalyzed by intact mitochondria. Biochim Biophys Acta. 1956 Apr;20(1):85–91. doi: 10.1016/0006-3002(56)90266-9. [DOI] [PubMed] [Google Scholar]
  16. WADKINS C. L., LEHNINGER A. L. The adenosine triphosphate-adenosine diphosphate exchange reaction of oxidative phosphorylation. J Biol Chem. 1958 Dec;233(6):1589–1597. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES