Abstract
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BANGHAM A. D., PETHICA B. A., SEAMAN G. V. The charged groups at the interface of some blood cells. Biochem J. 1958 May;69(1):12–19. doi: 10.1042/bj0690012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
- Barton P. G. The influence of surface charge density of phosphatides on the binding of some cations. J Biol Chem. 1968 Jul 25;243(14):3884–3890. [PubMed] [Google Scholar]
- Chapman D., Urbina J. Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem. 1974 Apr 25;249(8):2512–2521. [PubMed] [Google Scholar]
- Cohen J. A., Cohen M. Adsorption of monovalent and divalent cations by phospholipid membranes. The monomer-dimer problem. Biophys J. 1981 Dec;36(3):623–651. doi: 10.1016/S0006-3495(81)84756-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donath E., Voigt A. Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophys J. 1986 Feb;49(2):493–499. doi: 10.1016/S0006-3495(86)83659-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
- Etemadi A. H. Membrane asymmetry. A survey and critical appraisal of the methodology. II. Methods for assessing the unequal distribution of lipids. Biochim Biophys Acta. 1980 Dec 31;604(3):423–475. doi: 10.1016/0005-2736(80)90579-9. [DOI] [PubMed] [Google Scholar]
- HAYDON D. A. The surface charge of cells and some other small particles as indicated by electrophoresis. II. The interpretation of the electrophoretic charge. Biochim Biophys Acta. 1961 Jul 8;50:457–462. doi: 10.1016/0006-3002(61)90004-x. [DOI] [PubMed] [Google Scholar]
- HEARD D. H., SEAMAN G. V. The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane. J Gen Physiol. 1960 Jan;43:635–654. doi: 10.1085/jgp.43.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrich R., Gaestel M., Glaser R. The electric potential profile across the erythrocyte membrane. J Theor Biol. 1982 May 21;96(2):211–231. doi: 10.1016/0022-5193(82)90222-3. [DOI] [PubMed] [Google Scholar]
- Jacobs A., White G. P., Tait G. P. Iron chelation in cell cultures by two conjugates of 2,3-dihydroxybenzoic acid (2,3 -DHB). Biochem Biophys Res Commun. 1977 Feb 21;74(4):1626–1630. doi: 10.1016/0006-291x(77)90629-5. [DOI] [PubMed] [Google Scholar]
- Levine S., Levine M., Sharp K. A., Brooks D. E. Theory of the electrokinetic behavior of human erythrocytes. Biophys J. 1983 May;42(2):127–135. doi: 10.1016/S0006-3495(83)84378-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine Y. K., Lee A. G., Birdsall N. J., Metcalfe J. C., Robinson J. D. The interaction of paramagnetic ions and spin labels with lecithin bilayers. Biochim Biophys Acta. 1973 Feb 16;291(3):592–607. doi: 10.1016/0005-2736(73)90464-1. [DOI] [PubMed] [Google Scholar]
- Lin G. S., Macey R. I., Mehlhorn R. J. Determination of the electric potential at the external and internal bilayer-aqueous interfaces of the human erythrocyte membrane using spin probes. Biochim Biophys Acta. 1983 Aug 10;732(3):683–690. doi: 10.1016/0005-2736(83)90247-x. [DOI] [PubMed] [Google Scholar]
- McDaniel R. V., McIntosh T. J. X-Ray Diffraction Studies of the Cholera Toxin receptor, G(M1). Biophys J. 1986 Jan;49(1):94–96. doi: 10.1016/s0006-3495(86)83606-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDaniel R. V., McLaughlin A., Winiski A. P., Eisenberg M., McLaughlin S. Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes. Biochemistry. 1984 Sep 25;23(20):4618–4624. doi: 10.1021/bi00315a016. [DOI] [PubMed] [Google Scholar]
- McDaniel R. V., Sharp K., Brooks D., McLaughlin A. C., Winiski A. P., Cafiso D., McLaughlin S. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory. Biophys J. 1986 Mar;49(3):741–752. doi: 10.1016/S0006-3495(86)83700-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A. Possible modulation of reactions on the cell surface by changes in electrostatic potential that accompany cell contact. Ann N Y Acad Sci. 1974;238:362–371. doi: 10.1111/j.1749-6632.1974.tb26804.x. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A., Rand R. P., Stamatoff J. Perturbation of membrane structure by uranyl acetate labeling. Biophys J. 1981 Mar;33(3):475–477. doi: 10.1016/S0006-3495(81)84908-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renthal R., Cha C. H. Charge asymmetry of the purple membrane measured by uranyl quenching of dansyl fluorescence. Biophys J. 1984 May;45(5):1001–1006. doi: 10.1016/S0006-3495(84)84245-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEAMAN G. V., HEARD D. H. The surface of the washed human erythrocyte as a polyanion. J Gen Physiol. 1960 Nov;44:251–268. doi: 10.1085/jgp.44.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah D. O. Interaction of uranyl ions with phospholipid and cholesterol monolayers. J Colloid Interface Sci. 1969 Feb;29(2):210–215. doi: 10.1016/0021-9797(69)90188-x. [DOI] [PubMed] [Google Scholar]
- Sillerud L. O., Barnett R. E. Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesicles. Biochemistry. 1982 Apr 13;21(8):1756–1760. doi: 10.1021/bi00537a009. [DOI] [PubMed] [Google Scholar]
- Stamatoff J., Bilash T., Ching Y., Eisenberger P. X-ray scattering from labeled membranes. Biophys J. 1979 Dec;28(3):413–421. doi: 10.1016/S0006-3495(79)85190-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ting-Beall H. P. Interactions of uranyl ions with lipid bilayer membranes. J Microsc. 1980 Feb;118(2):221–227. doi: 10.1111/j.1365-2818.1980.tb00264.x. [DOI] [PubMed] [Google Scholar]
- Waggoner A. S., Stryer L. Fluorescent probes of biological membranes. Proc Natl Acad Sci U S A. 1970 Oct;67(2):579–589. doi: 10.1073/pnas.67.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Deenen L. L. Topology and dynamics of phospholipids in membranes. FEBS Lett. 1981 Jan 12;123(1):3–15. doi: 10.1016/0014-5793(81)80007-5. [DOI] [PubMed] [Google Scholar]