Abstract
We used microelectrodes to examine the effects of organic substrates, particularly lactate (Lac-), on the intracellular pH (pHi) and basolateral membrane potential (Vbl) in isolated, perfused proximal tubules of the tiger salamander. Exposure of the luminal and basolateral membranes to 3.6 mM Lac- caused pHi to increase by approximately 0.2, opposite to the decrease expected from nonionic diffusion of lactic acid (HLac) into the cell. Addition of Lac- to only the lumen also caused alkalinization, but only if Na+ was present. This alkalinization was not accompanied by immediate Vbl changes, which suggests that it involves luminal, electroneutral Na/Lac cotransport. Addition of Lac- to only the basolateral solution caused pHi to decrease by approximately 0.08. The initial rate of this acidification was a saturable function of [Lac-], was not affected by removal of Na+, and was reversibly reduced by alpha-cyano-4-hydroxycinnamate (CHC). Thus, the pHi decrease induced by basolateral Lac- appears to be due to the basolateral entry of H+ and Lac-, mediated by an H/Lac cotransporter (or a Lac-base exchanger). Our data suggest that this transporter is electroneutral and is not present at the luminal membrane. A key question is how the addition of Lac- to the lumen increases pHi. We found that inhibition of basolateral H/Lac cotransport by basolateral CHC reduced the initial rate of pHi increase caused by luminal Lac-. On the other hand, luminal CHC had no effect on the luminal Lac(-)-induced alkalinization. These data suggest that when Lac- is present in the lumen, it enters the cell from the lumen via electroneutral Na/Lac cotransport and then exists with H+ across the basolateral membrane via electroneutral H/Lac cotransport. The net effect is transepithelial Lac- reabsorption, basolateral acid extrusion, and intracellular alkalinization.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammann D., Lanter F., Steiner R. A., Schulthess P., Shijo Y., Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem. 1981 Dec;53(14):2267–2269. doi: 10.1021/ac00237a031. [DOI] [PubMed] [Google Scholar]
- Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
- Aronson P. S. Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol. 1983 Dec;245(6):F647–F659. doi: 10.1152/ajprenal.1983.245.6.F647. [DOI] [PubMed] [Google Scholar]
- Barac-Nieto M., Murer H., Kinne R. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflugers Arch. 1982 Feb;392(4):366–371. doi: 10.1007/BF00581633. [DOI] [PubMed] [Google Scholar]
- Barac-Nieto M., Murer H., Kinne R. Lactate-sodium cotransport in rat renal brush border membranes. Am J Physiol. 1980 Nov;239(5):F496–F506. doi: 10.1152/ajprenal.1980.239.5.F496. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand P. H., Stansbury R. S. Lactate absorption in Thamnophis proximal tubule: transport versus metabolism. Am J Physiol. 1980 Mar;238(3):F218–F228. doi: 10.1152/ajprenal.1980.238.3.F218. [DOI] [PubMed] [Google Scholar]
- Brand P. H., Stansbury R. S. Lactate transport by Thamnophis proximal tubule: sodium dependence. Am J Physiol. 1981 May;240(5):F388–F394. doi: 10.1152/ajprenal.1981.240.5.F388. [DOI] [PubMed] [Google Scholar]
- Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
- Burg M., Patlak C., Green N., Villey D. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am J Physiol. 1976 Aug;231(2):627–637. doi: 10.1152/ajplegacy.1976.231.2.627. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Ikeuchi M., Fujimoto W. Y. Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):269–271. doi: 10.1038/311269a0. [DOI] [PubMed] [Google Scholar]
- Deuticke B., Beyer E., Forst B. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim Biophys Acta. 1982 Jan 4;684(1):96–110. doi: 10.1016/0005-2736(82)90053-0. [DOI] [PubMed] [Google Scholar]
- Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70(2):89–103. doi: 10.1007/BF01870219. [DOI] [PubMed] [Google Scholar]
- Deuticke B., Rickert I., Beyer E. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta. 1978 Feb 2;507(1):137–155. doi: 10.1016/0005-2736(78)90381-4. [DOI] [PubMed] [Google Scholar]
- Dubinsky W. P., Racker E. The mechanism of lactate transport in human erythrocytes. J Membr Biol. 1978 Dec 8;44(1):25–36. doi: 10.1007/BF01940571. [DOI] [PubMed] [Google Scholar]
- Forster J., Steels P. S., Boulpaep E. L. Organic substrate effects on and heterogeneity of Necturus proximal tubule function. Kidney Int. 1980 Apr;17(4):479–490. doi: 10.1038/ki.1980.56. [DOI] [PubMed] [Google Scholar]
- Guggino S. E., Martin G. J., Aronson P. S. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am J Physiol. 1983 Jun;244(6):F612–F621. doi: 10.1152/ajprenal.1983.244.6.F612. [DOI] [PubMed] [Google Scholar]
- Gullans S. R., Brazy P. C., Dennis V. W., Mandel L. J. Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule. Am J Physiol. 1984 Jun;246(6 Pt 2):F859–F869. doi: 10.1152/ajprenal.1984.246.6.F859. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höhmann B., Frohnert P. P., Kinne R., Baumann K. Proximal tubular lactate transport in rat kidney: a micropuncture study. Kidney Int. 1974 Apr;5(4):261–270. doi: 10.1038/ki.1974.35. [DOI] [PubMed] [Google Scholar]
- Kostos V., DiTullio N. W., Rush J., Cieslinski L., Saunders H. L. The effect of 3-mercaptopicolinic acid on phosphoenolpyruvate carboxykinase (GTP) in the rat and guinea pig. Arch Biochem Biophys. 1975 Dec;171(2):459–465. doi: 10.1016/0003-9861(75)90054-5. [DOI] [PubMed] [Google Scholar]
- Mengual R., Leblanc G., Sudaka P. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry. J Biol Chem. 1983 Dec 25;258(24):15071–15078. [PubMed] [Google Scholar]
- Nord E. P., Wright S. H., Kippen I., Wright E. M. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J Membr Biol. 1983;72(3):213–221. doi: 10.1007/BF01870588. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sackin H., Boulpaep E. L. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am J Physiol. 1981 Jul;241(1):F39–F52. doi: 10.1152/ajprenal.1981.241.1.F39. [DOI] [PubMed] [Google Scholar]
- Sackin H., Boulpaep E. L. Rheogenic transport in the renal proximal tubule. J Gen Physiol. 1983 Dec;82(6):819–851. doi: 10.1085/jgp.82.6.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokol P. P., Holohan P. D., Ross C. R. Electroneutral transport of organic cations in canine renal brush border membrane vesicles (BBMV). J Pharmacol Exp Ther. 1985 Jun;233(3):694–699. [PubMed] [Google Scholar]
- Spencer T. L., Lehninger A. L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976 Feb 15;154(2):405–414. doi: 10.1042/bj1540405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storelli C., Corcelli A., Cassano G., Hildmann B., Murer H., Lippe C. Polar distribution of sodium-dependent and sodium-independent transport system for L-lactate in the plasma membrane of rat enterocytes. Pflugers Arch. 1980 Oct;388(1):11–16. doi: 10.1007/BF00582622. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984 Sep;354:3P–22P. doi: 10.1113/jphysiol.1984.sp015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S., Fasold H. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. III. Specificity for aromatic compounds. Pflugers Arch. 1982 Nov 11;395(3):227–231. doi: 10.1007/BF00584814. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of D-lactate, Na+-dependence, pH-dependence and effect of inhibitors. Pflugers Arch. 1982 Nov 11;395(3):212–219. doi: 10.1007/BF00584812. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds. Pflugers Arch. 1982 Nov 11;395(3):220–226. doi: 10.1007/BF00584813. [DOI] [PubMed] [Google Scholar]
- Wright E. M. Transport of carboxylic acids by renal membrane vesicles. Annu Rev Physiol. 1985;47:127–141. doi: 10.1146/annurev.ph.47.030185.001015. [DOI] [PubMed] [Google Scholar]
- de Hemptinne A., Marrannes R., Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol. 1983 Sep;245(3):C178–C183. doi: 10.1152/ajpcell.1983.245.3.C178. [DOI] [PubMed] [Google Scholar]