Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Sep 1;92(3):307–330. doi: 10.1085/jgp.92.3.307

Light reduces the excitation efficiency in the nss mutant of the sheep blowfly Lucilia

PMCID: PMC2228904  PMID: 3225552

Abstract

The nss (no steady state) phototransduction mutant of the sheep blowfly Lucilia was studied electrophysiologically using intracellular recordings. The effects of the nss mutation on the receptor potential are manifested in the following features of the light response. (a) The responses to a flash or to dim lights are close to normal, but the receptor potential decays close to the baseline level during prolonged illumination after a critical level of light intensity is reached. (b) The decline of the response is accompanied by a large reduction in responsiveness to light that recovers within 20 s in the dark. (c) The full reduction in responsiveness to light is reached when approximately 13% of the photopigment molecules are converted from rhodopsin (R) to metarhodopsin (M). (d) A maximal net pigment conversion from R to M by blue light induces persistent inactivation in the dark, without an apparent voltage response. This inactivation could be abolished at any time by M-to-R conversion with orange light. The above features of the mutant indicate that the effect of the nss mutation on the light response of Lucilia is very similar to the effects of the transient receptor potential (trp) mutation on the photoreceptor potential of Drosophila. Noise analysis and voltage measurements indicate that the decay of the receptor potential is due to a severe reduction in the rate of occurrence of the elementary voltage responses (bumps). The bumps are only slightly modified in shape and amplitude during the decline of the response to light of medium intensity. There is also a large increase in response latency during intense background illumination. These results are consistent with the hypothesis that separate, independent mechanisms determine bump triggering and bump shape and amplitude. The nss mutation affects the triggering mechanism of the bump.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C., Baumann F., Bertrand D. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L). J Gen Physiol. 1976 Apr;67(4):475–491. doi: 10.1085/jgp.67.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlow R. B., Jr, Kaplan E. Properties of visual cells in the lateral eye of Limulus in situ: intracellular recordings. J Gen Physiol. 1977 Feb;69(2):203–220. doi: 10.1085/jgp.69.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow R. B., Jr, Kaplan E., Renninger G. H., Saito T. Circadian rhythms in Limulus photoreceptors. I. Intracellular studies. J Gen Physiol. 1987 Mar;89(3):353–378. doi: 10.1085/jgp.89.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. E., Lisman J. E. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature. 1975 Nov 20;258(5532):252–254. doi: 10.1038/258252a0. [DOI] [PubMed] [Google Scholar]
  5. Brown J. E., Rubin L. J., Ghalayini A. J., Tarver A. P., Irvine R. F., Berridge M. J., Anderson R. E. myo-Inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 1984 Sep 13;311(5982):160–163. doi: 10.1038/311160a0. [DOI] [PubMed] [Google Scholar]
  6. Cosens D. J., Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969 Oct 18;224(5216):285–287. doi: 10.1038/224285a0. [DOI] [PubMed] [Google Scholar]
  7. Cosens D., Perry M. M. The fine structure of the eye of a visual mutant, A-type of Drosophila melanogaster. J Insect Physiol. 1972 Sep;18(9):1773–1786. doi: 10.1016/0022-1910(72)90109-6. [DOI] [PubMed] [Google Scholar]
  8. Devary O., Heichal O., Blumenfeld A., Cassel D., Suss E., Barash S., Rubinstein C. T., Minke B., Selinger Z. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6939–6943. doi: 10.1073/pnas.84.19.6939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  10. Fein A., Charlton J. S. A quantitative comparison of the time-course of sensitivity changes produced by calcium injection and light adaptation in Limulus ventral photoreceptors. Biophys J. 1978 Apr;22(1):105–113. doi: 10.1016/S0006-3495(78)85474-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fein A., Payne R., Corson D. W., Berridge M. J., Irvine R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature. 1984 Sep 13;311(5982):157–160. doi: 10.1038/311157a0. [DOI] [PubMed] [Google Scholar]
  12. Fesce R., Segal J. R., Hurlbut W. P. Fluctuation analysis of nonideal shot noise. Application to the neuromuscular junction. J Gen Physiol. 1986 Jul;88(1):25–57. doi: 10.1085/jgp.88.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hillman P., Hochstein S., Minke B. Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev. 1983 Apr;63(2):668–772. doi: 10.1152/physrev.1983.63.2.668. [DOI] [PubMed] [Google Scholar]
  14. Howard J., Blakeslee B., Laughlin S. B. The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415–435. doi: 10.1098/rspb.1987.0053. [DOI] [PubMed] [Google Scholar]
  15. Johnson E. C., Pak W. L. Electrophysiological study of Drosophila rhodopsin mutants. J Gen Physiol. 1986 Nov;88(5):651–673. doi: 10.1085/jgp.88.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson E. C., Robinson P. R., Lisman J. E. Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature. 1986 Dec 4;324(6096):468–470. doi: 10.1038/324468a0. [DOI] [PubMed] [Google Scholar]
  17. Kaplan E., Barlow R. B., Jr Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature. 1980 Jul 24;286(5771):393–395. doi: 10.1038/286393a0. [DOI] [PubMed] [Google Scholar]
  18. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lisman J., Goldring M. Early events in visual transduction in Limulus photoreceptors. Neurosci Res Suppl. 1985;2:S101–S117. doi: 10.1016/0921-8696(85)90010-6. [DOI] [PubMed] [Google Scholar]
  20. Lo M. V., Pak W. L. Light-induced pigment granule migration in the retinular cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants. J Gen Physiol. 1981 Feb;77(2):155–175. doi: 10.1085/jgp.77.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minke B., Kirschfeld K. Fast electrical potentials arising from activation of metarhodopsin in the fly. J Gen Physiol. 1980 Apr;75(4):381–402. doi: 10.1085/jgp.75.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol. 1982 Mar;79(3):361–385. doi: 10.1085/jgp.79.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
  25. Montell C., Jones K., Hafen E., Rubin G. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science. 1985 Nov 29;230(4729):1040–1043. doi: 10.1126/science.3933112. [DOI] [PubMed] [Google Scholar]
  26. Paj W. K., Istrit S. E., Deland M. C., Wu C. F. Photoreceptor mutant of Drosophia: is protein involved in intermediate steps of phototransduction? Science. 1976 Nov 26;194(4268):956–959. doi: 10.1126/science.824732. [DOI] [PubMed] [Google Scholar]
  27. Pak W. L., Lidington K. J. Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J Gen Physiol. 1974 Jun;63(6):740–756. doi: 10.1085/jgp.63.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stephenson R. S., Pak W. L. Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J Gen Physiol. 1980 Apr;75(4):353–379. doi: 10.1085/jgp.75.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wong F., Knight B. W. Adapting-bump model for eccentric cells of Limulus. J Gen Physiol. 1980 Nov;76(5):539–557. doi: 10.1085/jgp.76.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wong F., Knight B. W., Dodge F. A. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol. 1982 Jun;79(6):1089–1113. doi: 10.1085/jgp.79.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wong F., Knight B. W., Dodge F. A. Dispersion of latencies in photoreceptors of Limulus and the adapting-bump model. J Gen Physiol. 1980 Nov;76(5):517–537. doi: 10.1085/jgp.76.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES