Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1988 Nov 1;92(5):685–711. doi: 10.1085/jgp.92.5.685

Volume-sensitive K influx in human red cell ghosts

PMCID: PMC2228920  PMID: 2853201

Abstract

K influx into resealed human red cell ghosts increases when the ghosts are swollen. The influx demonstrates properties similar to volume- sensitive K fluxes present in other cells. The influx is, for the most part, insensitive to the nature of the major intracellular cation and therefore is not a K-K exchange. The influx is much greater when the major anion is Cl than when the major anion is NO3; Cl stimulates the flux and, at constant Cl, NO3 inhibits it. Increase in the influx rate is rapid when shrunken ghosts are swollen or when NO3 is replaced by Cl. The volume-sensitive K influx requires intracellular MgATP at low concentrations, and ATP cannot be replaced by nonhydrolyzable ATP analogues. The volume-sensitive influx is inhibited by Mg2+ and by high concentrations of vanadate, but is stimulated by low concentrations of vanadate. It is not modified by cAMP, the removal of Ca2+ by EGTA, substances that activate protein kinase C, or by inhibition of phosphatidylinositol kinase. The influx is inhibited by neomycin and by trifluoperazine.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorante J. S., Cala P. M. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport. J Gen Physiol. 1987 Aug;90(2):209–227. doi: 10.1085/jgp.90.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agre P., Gardner K., Bennett V. Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes. J Biol Chem. 1983 May 25;258(10):6258–6265. [PubMed] [Google Scholar]
  3. Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
  4. Cala P. M. Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange. J Gen Physiol. 1983 Dec;82(6):761–784. doi: 10.1085/jgp.82.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
  6. Dale G. L. Phosphatidylinositol 4-phosphate kinase is associated with the membrane skeleton in human erythrocytes. Biochem Biophys Res Commun. 1985 Nov 27;133(1):189–194. doi: 10.1016/0006-291x(85)91859-5. [DOI] [PubMed] [Google Scholar]
  7. Downes C. P., Michell R. H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J. 1981 Jul 15;198(1):133–140. doi: 10.1042/bj1980133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunham P. B., Ellory J. C. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol. 1981 Sep;318:511–530. doi: 10.1113/jphysiol.1981.sp013881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunham P. B., Logue P. J. Potassium-chloride cotransport in resealed human red cell ghosts. Am J Physiol. 1986 Apr;250(4 Pt 1):C578–C583. doi: 10.1152/ajpcell.1986.250.4.C578. [DOI] [PubMed] [Google Scholar]
  10. Dunham P. B., Stewart G. W., Ellory J. C. Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1711–1715. doi: 10.1073/pnas.77.3.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eveloff J. L., Warnock D. G. Activation of ion transport systems during cell volume regulation. Am J Physiol. 1987 Jan;252(1 Pt 2):F1–10. doi: 10.1152/ajprenal.1987.252.1.F1. [DOI] [PubMed] [Google Scholar]
  12. Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
  13. Faquin W. C., Chahwala S. B., Cantley L. C., Branton D. Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9. Biochim Biophys Acta. 1986 Jul 11;887(2):142–149. doi: 10.1016/0167-4889(86)90048-0. [DOI] [PubMed] [Google Scholar]
  14. Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujise H., Lauf P. K. Swelling, NEM, and A23187 activate Cl(-)-dependent K+ transport in high-K+ sheep red cells. Am J Physiol. 1987 Feb;252(2 Pt 1):C197–C204. doi: 10.1152/ajpcell.1987.252.2.C197. [DOI] [PubMed] [Google Scholar]
  16. Grinstein S., Dupre A., Rothstein A. Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol. 1982 May;79(5):849–868. doi: 10.1085/jgp.79.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HOFFMAN J. F. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958 Sep 20;42(1):9–28. doi: 10.1085/jgp.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haas M., McManus T. J. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions. J Gen Physiol. 1985 May;85(5):649–667. doi: 10.1085/jgp.85.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
  20. Hoffmann E. K., Simonsen L. O., Lambert I. H. Volume-induced increase of K+ and Cl- permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol. 1984;78(3):211–222. doi: 10.1007/BF01925969. [DOI] [PubMed] [Google Scholar]
  21. Kaji D., Kahn T. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: effect of NEM. Am J Physiol. 1985 Nov;249(5 Pt 1):C490–C496. doi: 10.1152/ajpcell.1985.249.5.C490. [DOI] [PubMed] [Google Scholar]
  22. Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaplan J. H. Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions. J Gen Physiol. 1982 Dec;80(6):915–937. doi: 10.1085/jgp.80.6.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lang V., Pryhitka G., Buckley J. T. Effect of neomycin and ionophore A23189 on ATP levels and turnover of polyphosphoinositides in human erythrocytes. Can J Biochem. 1977 Sep;55(9):1007–1012. doi: 10.1139/o77-150. [DOI] [PubMed] [Google Scholar]
  26. Lauf P. K., Adragna N. C., Garay R. P. Activation by N-ethylmaleimide of a latent K+-Cl- flux in human red blood cells. Am J Physiol. 1984 May;246(5 Pt 1):C385–C390. doi: 10.1152/ajpcell.1984.246.5.C385. [DOI] [PubMed] [Google Scholar]
  27. Lauf P. K., Bauer J. Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes. Biochem Biophys Res Commun. 1987 Apr 29;144(2):849–855. doi: 10.1016/s0006-291x(87)80042-6. [DOI] [PubMed] [Google Scholar]
  28. Lauf P. K., Theg B. E. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1422–1428. doi: 10.1016/0006-291x(80)90445-3. [DOI] [PubMed] [Google Scholar]
  29. Lauf P. K. Thiol-dependent passive K+Cl- transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes. J Membr Biol. 1984;82(2):167–178. doi: 10.1007/BF01868941. [DOI] [PubMed] [Google Scholar]
  30. Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
  31. Luthra M. G. Trifluoperazine inhibition of calmodulin-sensitive Ca2+ -ATPase and calmodulin insensitive (Na+ +K+)- and Mg2+ -ATPase activities of human and rat red blood cells. Biochim Biophys Acta. 1982 Nov 8;692(2):271–277. doi: 10.1016/0005-2736(82)90531-4. [DOI] [PubMed] [Google Scholar]
  32. McLaughlin S., Whitaker M. Cations that alter surface potentials of lipid bilayers increase the calcium requirement for exocytosis in sea urchin eggs. J Physiol. 1988 Feb;396:189–204. doi: 10.1113/jphysiol.1988.sp016958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palfrey H. C., Lai Y., Greengard P. Calmodulin-dependent protein kinase from avian erythrocytes. Prog Clin Biol Res. 1984;165:291–308. [PubMed] [Google Scholar]
  34. Palfrey H. C., Waseem A. Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins. J Biol Chem. 1985 Dec 15;260(29):16021–16029. [PubMed] [Google Scholar]
  35. Patel V. P., Fairbanks G. Relationship of major phosphorylation reactions and MgATPase activities to ATP-dependent shape change of human erythrocyte membranes. J Biol Chem. 1986 Mar 5;261(7):3170–3177. [PubMed] [Google Scholar]
  36. Quist E. E., Reece K. L. The role of diphosphatidylinositol in erythrocyte membrane shape regulation. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1023–1030. doi: 10.1016/0006-291x(80)91575-2. [DOI] [PubMed] [Google Scholar]
  37. Riddick D. H., Kregenow F. M., Orloff J. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. J Gen Physiol. 1971 Jun;57(6):752–766. doi: 10.1085/jgp.57.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sachs J. R. Inhibition of the Na,K pump by vanadate in high-Na solutions. Modification of the reaction mechanism by external Na acting at a high-affinity site. J Gen Physiol. 1987 Aug;90(2):291–320. doi: 10.1085/jgp.90.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sachs J. R. The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism. J Physiol. 1980 May;302:219–240. doi: 10.1113/jphysiol.1980.sp013239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schacht J. Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. J Neurochem. 1976 Nov;27(5):1119–1124. doi: 10.1111/j.1471-4159.1976.tb00318.x. [DOI] [PubMed] [Google Scholar]
  42. Schindler M., Koppel D. E., Sheetz M. P. Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457–1461. doi: 10.1073/pnas.77.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol. 1977 Jul;70(1):81–97. doi: 10.1085/jgp.70.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Swarup G., Cohen S., Garbers D. L. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. 1982 Aug;107(3):1104–1109. doi: 10.1016/0006-291x(82)90635-0. [DOI] [PubMed] [Google Scholar]
  45. Thomas E. L., King L. E., Jr, Morrison M. The uptake of cyclic AMP by human erythrocytes and its effect on membrane phosphorylation. Arch Biochem Biophys. 1979 Sep;196(2):459–464. doi: 10.1016/0003-9861(79)90297-2. [DOI] [PubMed] [Google Scholar]
  46. Thornhill W. B., Laris P. C. KCl loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonic media, 2-deoxyglucose and propranolol. Biochim Biophys Acta. 1984 Jun 27;773(2):207–218. doi: 10.1016/0005-2736(84)90084-1. [DOI] [PubMed] [Google Scholar]
  47. Wiater L. A., Dunham P. B. Passive transport of K+ and Na+ in human red blood cells: sulfhydryl binding agents and furosemide. Am J Physiol. 1983 Nov;245(5 Pt 1):C348–C356. doi: 10.1152/ajpcell.1983.245.5.C348. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES