Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Jul 1;96(1):23–46. doi: 10.1085/jgp.96.1.23

Expression of epithelial Na channels in Xenopus oocytes

PMCID: PMC2228986  PMID: 2170563

Abstract

Epithelial Na channel activity was expressed in oocytes from Xenopus laevis after injection of mRNA from A6 cells, derived from Xenopus kidney. Poly A(+) RNA was extracted from confluent cell monolayers grown on either plastic or permeable supports. 1-50 ng RNA was injected into stage 5-6 oocytes. Na channel activity was assayed as amiloride- sensitive current (INa) under voltage-clamp conditions 1-3 d after injection. INa was not detectable in noninjected or water-injected oocytes. This amiloride-sensitive pathway induced by the mRNA had a number of characteristics in common with that in epithelial cells, including (a) high selectivity for Na over K, (b) high sensitivity to amiloride with an apparent K1 of approximately 100 nM, (c) saturation with respect to external Na with an apparent Km of approximately 10 mM, and (d) a time-dependent activation of current with hyperpolarization of the oocyte membrane. Expression of channel activity was temperature dependent, being slow at 19 degrees C but much more rapid at 25 degrees C. Fractionation of mRNA on a sucrose density gradient revealed that the species of RNA inducing channel activity had a sedimentation coefficient of approximately 17 S. Treatment of filter-grown cells with 300 nM aldosterone for 24 h increased Na transport in the A6 cells by up to fivefold but did not increase the ability of mRNA isolated from those cells to induce channel activity in oocytes. The apparent abundance of mRNA coding for channel activity was 10-fold less in cells grown on plastic than in those grown on filters, but was increased two- to threefold by aldosterone.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asher C., Garty H. Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7413–7417. doi: 10.1073/pnas.85.19.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  3. Benos D. J., Saccomani G., Sariban-Sohraby S. The epithelial sodium channel. Subunit number and location of the amiloride binding site. J Biol Chem. 1987 Aug 5;262(22):10613–10618. [PubMed] [Google Scholar]
  4. Dunn W. A., Hubbard A. L., Aronson N. N., Jr Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem. 1980 Jun 25;255(12):5971–5978. [PubMed] [Google Scholar]
  5. Eaton D. C., Hamilton K. L. The amiloride-blockable sodium channel of epithelial tissue. Ion Channels. 1988;1:251–282. doi: 10.1007/978-1-4615-7302-9_7. [DOI] [PubMed] [Google Scholar]
  6. Fambrough D. M. Biosynthesis and intracellular transport of acetylcholine receptors. Methods Enzymol. 1983;96:331–352. doi: 10.1016/s0076-6879(83)96031-7. [DOI] [PubMed] [Google Scholar]
  7. Garty H., Asher C. Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles. J Biol Chem. 1985 Jul 15;260(14):8330–8335. [PubMed] [Google Scholar]
  8. Garty H., Benos D. J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev. 1988 Apr;68(2):309–373. doi: 10.1152/physrev.1988.68.2.309. [DOI] [PubMed] [Google Scholar]
  9. Garty H., Edelman I. S. Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol. 1983 Jun;81(6):785–803. doi: 10.1085/jgp.81.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garty H. Mechanisms of aldosterone action in tight epithelia. J Membr Biol. 1986;90(3):193–205. doi: 10.1007/BF01870126. [DOI] [PubMed] [Google Scholar]
  11. Garty H., Yeger O., Asher C. Sodium-dependent inhibition of the epithelial sodium channel by an arginyl-specific reagent. J Biol Chem. 1988 Apr 25;263(12):5550–5554. [PubMed] [Google Scholar]
  12. Geering K., Claire M., Gaeggeler H. P., Rossier B. C. Receptor occupancy vs. induction of Na+-K+-ATPase and Na+ transport by aldosterone. Am J Physiol. 1985 Jan;248(1 Pt 1):C102–C108. doi: 10.1152/ajpcell.1985.248.1.C102. [DOI] [PubMed] [Google Scholar]
  13. Geering K., Gaeggeler H. P., Rossier B. C. Effects of thyromimetic drugs on aldosterone-dependent sodium transport in the toad bladder. J Membr Biol. 1984;77(1):15–23. doi: 10.1007/BF01871096. [DOI] [PubMed] [Google Scholar]
  14. Geering K., Meyer D. I., Paccolat M. P., Kraehenbühl J. P., Rossier B. C. Membrane insertion of alpha- and beta-subunits of Na+,K+-ATPase. J Biol Chem. 1985 Apr 25;260(8):5154–5160. [PubMed] [Google Scholar]
  15. George A. L., Jr, Staub O., Geering K., Rossier B. C., Kleyman T. R., Kraehenbuhl J. P. Functional expression of the amiloride-sensitive sodium channel in Xenopus oocytes. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7295–7298. doi: 10.1073/pnas.86.18.7295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gurdon J. B., Lane C. D., Woodland H. R., Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971 Sep 17;233(5316):177–182. doi: 10.1038/233177a0. [DOI] [PubMed] [Google Scholar]
  17. Hamilton K. L., Eaton D. C. Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am J Physiol. 1985 Sep;249(3 Pt 1):C200–C207. doi: 10.1152/ajpcell.1985.249.3.C200. [DOI] [PubMed] [Google Scholar]
  18. Hinton C. F., Eaton D. C. Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):C825–C829. doi: 10.1152/ajpcell.1989.257.4.C825. [DOI] [PubMed] [Google Scholar]
  19. Hunt T., Hunter T., Munro A. Control of haemoglobin synthesis: rate of translation of the messenger RNA for the alpha and beta chains. J Mol Biol. 1969 Jul 14;43(1):123–133. doi: 10.1016/0022-2836(69)90083-7. [DOI] [PubMed] [Google Scholar]
  20. Kleyman T. R., Cragoe E. J., Jr, Kraehenbuhl J. P. The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies. J Biol Chem. 1989 Jul 15;264(20):11995–12000. [PubMed] [Google Scholar]
  21. Kroll B., Bautsch W., Bremer S., Wilke M., Tümmler B., Frömter E. Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):L284–L288. doi: 10.1152/ajplung.1989.257.4.L284. [DOI] [PubMed] [Google Scholar]
  22. Olans L., Sariban-Sohraby S., Benos D. J. Saturation behavior of single, amiloride-sensitive Na+ channels in planar lipid bilayers. Biophys J. 1984 Dec;46(6):831–835. doi: 10.1016/S0006-3495(84)84082-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paccolat M. P., Geering K., Gaeggeler H. P., Rossier B. C. Aldosterone regulation of Na+ transport and Na+-K+-ATPase in A6 cells: role of growth conditions. Am J Physiol. 1987 May;252(5 Pt 1):C468–C476. doi: 10.1152/ajpcell.1987.252.5.C468. [DOI] [PubMed] [Google Scholar]
  24. Palmer L. G., Century T. J., Civan M. M. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes. J Membr Biol. 1978 Apr 20;40(1):25–38. doi: 10.1007/BF01909737. [DOI] [PubMed] [Google Scholar]
  25. Palmer L. G., Frindt G. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li. J Gen Physiol. 1988 Jul;92(1):121–138. doi: 10.1085/jgp.92.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Palmer L. G. Ion selectivity of epithelial Na channels. J Membr Biol. 1987;96(2):97–106. doi: 10.1007/BF01869236. [DOI] [PubMed] [Google Scholar]
  27. Palmer L. G., Speez N. Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am J Physiol. 1986 Feb;250(2 Pt 2):F273–F281. doi: 10.1152/ajprenal.1986.250.2.F273. [DOI] [PubMed] [Google Scholar]
  28. Palmer L. G. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J Membr Biol. 1984;80(2):153–165. doi: 10.1007/BF01868771. [DOI] [PubMed] [Google Scholar]
  29. Perkins F. M., Handler J. S. Transport properties of toad kidney epithelia in culture. Am J Physiol. 1981 Sep;241(3):C154–C159. doi: 10.1152/ajpcell.1981.241.3.C154. [DOI] [PubMed] [Google Scholar]
  30. Sariban-Sohraby S., Burg M. B., Turner R. J. Apical sodium uptake in toad kidney epithelial cell line A6. Am J Physiol. 1983 Sep;245(3):C167–C171. doi: 10.1152/ajpcell.1983.245.3.C167. [DOI] [PubMed] [Google Scholar]
  31. Sariban-Sohraby S., Burg M., Wiesmann W. P., Chiang P. K., Johnson J. P. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science. 1984 Aug 17;225(4663):745–746. doi: 10.1126/science.6463652. [DOI] [PubMed] [Google Scholar]
  32. Spooner P. M., Edelman I. S. Further studies on the effect of aldosterone on electrical resistance of toad bladder. Biochim Biophys Acta. 1975 Oct 6;406(2):304–314. doi: 10.1016/0005-2736(75)90012-7. [DOI] [PubMed] [Google Scholar]
  33. Truscello A., Geering K., Gäggeler H. P., Rossier B. C. Effects of butyrate on histone deacetylation and aldosterone-dependent Na+ transport in the toad bladder. J Biol Chem. 1983 Mar 10;258(5):3388–3395. [PubMed] [Google Scholar]
  34. Van Driessche W., Lindemann B. Concentration dependence of currents through single sodium-selective pores in frog skin. Nature. 1979 Nov 29;282(5738):519–520. doi: 10.1038/282519a0. [DOI] [PubMed] [Google Scholar]
  35. Warncke J., Lindemann B. Voltage dependence of Na channel blockage by amiloride: relaxation effects in admittance spectra. J Membr Biol. 1985;86(3):255–265. doi: 10.1007/BF01870605. [DOI] [PubMed] [Google Scholar]
  36. Weigel P. H., Oka J. A. Endocytosis and degradation mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. J Biol Chem. 1982 Feb 10;257(3):1201–1207. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES