Abstract
Detergent-solubilized plasma membrane protein of either adult bovine or calf lens and high-performance liquid chromatography-purified major intrinsic protein (MIP) of the lens were reconstituted into unilamellar vesicles and planar lipid bilayers. Freeze-fracture studies showed that the density of intramembrane particles in the vesicles was proportional to the protein/lipid ratio. At high ratios, these particles crystallized into tetragonal arrays as does MIP in lens fibers. Channels induced by either purified MIP or detergent-solubilized protein had essentially identical properties. The conductance of multichannel membranes was maximal near 0 mV and decreased to 0.49 +/- 0.08 of the maximum value at voltages greater than 80 mV. The dependence of the conductance on voltage was well fit by a two-state Boltzmann distribution. Voltage steps greater than 30 mV elicited an ohmic current step followed by a slow (seconds) biexponential decrease. The amplitudes and time constants depended on the magnitude but not the sign of the voltage. Steps from 100 mV to voltages less than 30 mV caused the channels to open exponentially with a millisecond time constant. Analysis of latency to first closure after a voltage step gave nearly the same time constants as multichannel kinetics. Single- channel conductance is proportional to salt concentration from 0.1 to 1.0 M in KCl. In 0.1M KCl, the channel had two preferred conductance states with amplitudes of 380 and 160 pS, as well as three additional substates. Multi- and single-channel data suggest that the channel has two kinetically important open states. The channel is slightly anion selective. The properties of the channel do not vary appreciably from pH 7.4 to 5.8 or from pCa 7 to 2. We propose that a channel with these properties could contribute to maintenance of lens transparency and fluid balance.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
- Bernardini G., Peracchia C. Gap junction crystallization in lens fibers after an increase in cell calcium. Invest Ophthalmol Vis Sci. 1981 Aug;21(2):291–299. [PubMed] [Google Scholar]
- Bok D., Dockstader J., Horwitz J. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J Cell Biol. 1982 Jan;92(1):213–220. doi: 10.1083/jcb.92.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Costello M. J., McIntosh T. J., Robertson J. D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest Ophthalmol Vis Sci. 1989 May;30(5):975–989. [PubMed] [Google Scholar]
- Costello M. J., McIntosh T. J., Robertson J. D. Membrane specializations in mammalian lens fiber cells: distribution of square arrays. Curr Eye Res. 1985 Nov;4(11):1183–1201. doi: 10.3109/02713688509003364. [DOI] [PubMed] [Google Scholar]
- Dahl G., Miller T., Paul D., Voellmy R., Werner R. Expression of functional cell-cell channels from cloned rat liver gap junction complementary DNA. Science. 1987 Jun 5;236(4806):1290–1293. doi: 10.1126/science.3035715. [DOI] [PubMed] [Google Scholar]
- Dickson D. H., Crock G. W. Interlocking patterns on primate lens fibers. Invest Ophthalmol. 1972 Oct;11(10):809–815. [PubMed] [Google Scholar]
- Duncan G., Croghan P. C. Mechanisms for the regulation of cell volume with particular reference to the lens. Exp Eye Res. 1969 Oct;8(4):421–428. doi: 10.1016/s0014-4835(69)80008-4. [DOI] [PubMed] [Google Scholar]
- Ebihara L., Beyer E. C., Swenson K. I., Paul D. L., Goodenough D. A. Cloning and expression of a Xenopus embryonic gap junction protein. Science. 1989 Mar 3;243(4895):1194–1195. doi: 10.1126/science.2466337. [DOI] [PubMed] [Google Scholar]
- Ehring G. R., Hall J. E. Single channel properties of lens MIP 28 reconstituted into planar lipid bilayers. Proc West Pharmacol Soc. 1988;31:251–253. [PubMed] [Google Scholar]
- FitzGerald P. G., Bok D., Horwitz J. The distribution of the main intrinsic membrane polypeptide in ocular lens. Curr Eye Res. 1985 Nov;4(11):1203–1218. doi: 10.3109/02713688509003365. [DOI] [PubMed] [Google Scholar]
- Fitzgerald P. G., Bok D., Horwitz J. Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens. J Cell Biol. 1983 Nov;97(5 Pt 1):1491–1499. doi: 10.1083/jcb.97.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller S. D., Capaldi R. A., Henderson R. Structure of cytochrome c oxidase in deoxycholate-drived two-dimensional crystals. J Mol Biol. 1979 Oct 25;134(2):305–327. doi: 10.1016/0022-2836(79)90037-8. [DOI] [PubMed] [Google Scholar]
- Gilula N. B. Topology of gap junction protein and channel function. Ciba Found Symp. 1987;125:128–139. doi: 10.1002/9780470513408.ch8. [DOI] [PubMed] [Google Scholar]
- Girsch S. J., Peracchia C. Lens cell-to-cell channel protein: I. Self-assembly into liposomes and permeability regulation by calmodulin. J Membr Biol. 1985;83(3):217–225. doi: 10.1007/BF01868696. [DOI] [PubMed] [Google Scholar]
- Girsch S. J., Peracchia C. Lens cell-to-cell channel protein: II. Conformational change in the presence of calmodulin. J Membr Biol. 1985;83(3):227–233. doi: 10.1007/BF01868697. [DOI] [PubMed] [Google Scholar]
- Glaeser R. M., Jubb J. S., Henderson R. Structural comparison of native and deoxycholate-treated purple membrane. Biophys J. 1985 Nov;48(5):775–780. doi: 10.1016/S0006-3495(85)83835-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gooden M. M., Takemoto L. J., Rintoul D. A. Reconstitution of MIP26 from single human lenses into artificial membranes. I. Differences in pH sensitivity of cataractous vs. normal human lens fiber cell proteins. Curr Eye Res. 1985 Nov;4(11):1107–1115. doi: 10.3109/02713688509003357. [DOI] [PubMed] [Google Scholar]
- Gooden M., Rintoul D., Takehana M., Takemoto L. Major intrinsic polypeptide (MIP26K) from lens membrane: reconstitution into vesicles and inhibition of channel forming activity by peptide antiserum. Biochem Biophys Res Commun. 1985 Apr 30;128(2):993–999. doi: 10.1016/0006-291x(85)90145-7. [DOI] [PubMed] [Google Scholar]
- Goodenough D. A., Paul D. L., Jesaitis L. Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions. J Cell Biol. 1988 Nov;107(5):1817–1824. doi: 10.1083/jcb.107.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorin M. B., Yancey S. B., Cline J., Revel J. P., Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell. 1984 Nov;39(1):49–59. doi: 10.1016/0092-8674(84)90190-9. [DOI] [PubMed] [Google Scholar]
- Gruijters W. T. A non-connexon protein (MIP) is involved in eye lens gap-junction formation. J Cell Sci. 1989 Jul;93(Pt 3):509–513. doi: 10.1242/jcs.93.3.509. [DOI] [PubMed] [Google Scholar]
- Gruijters W. T., Kistler J., Bullivant S., Goodenough D. A. Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions. J Cell Biol. 1987 Mar;104(3):565–572. doi: 10.1083/jcb.104.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. E., Vodyanoy I., Balasubramanian T. M., Marshall G. R. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. doi: 10.1016/S0006-3495(84)84151-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heppner D. B., Plonsey R. Simulation of electrical interaction of cardiac cells. Biophys J. 1970 Nov;10(11):1057–1075. doi: 10.1016/S0006-3495(70)86352-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertzberg E. L., Anderson D. J., Friedlander M., Gilula N. B. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions. J Cell Biol. 1982 Jan;92(1):53–59. doi: 10.1083/jcb.92.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz J., Bok D. Conformational properties of the main intrinsic polypeptide (MIP26) isolated from lens plasma membranes. Biochemistry. 1987 Dec 15;26(25):8092–8098. doi: 10.1021/bi00399a012. [DOI] [PubMed] [Google Scholar]
- Kistler J., Christie D., Bullivant S. Homologies between gap junction proteins in lens, heart and liver. Nature. 1988 Feb 25;331(6158):721–723. doi: 10.1038/331721a0. [DOI] [PubMed] [Google Scholar]
- Kistler J., Kirkland B., Bullivant S. Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol. 1985 Jul;101(1):28–35. doi: 10.1083/jcb.101.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar N. M., Gilula N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol. 1986 Sep;103(3):767–776. doi: 10.1083/jcb.103.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara T. The maturation of the lens cell: a morphologic study. Exp Eye Res. 1975 May;20(5):427–443. doi: 10.1016/0014-4835(75)90085-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mathias R. T., Rae J. L., Eisenberg R. S. Electrical properties of structural components of the crystalline lens. Biophys J. 1979 Jan;25(1):181–201. doi: 10.1016/S0006-3495(79)85284-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathias R. T., Rae J. L., Eisenberg R. S. The lens as a nonuniform spherical syncytium. Biophys J. 1981 Apr;34(1):61–83. doi: 10.1016/S0006-3495(81)84837-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathias R. T., Rae J. L. Steady state voltages in the frog lens. Curr Eye Res. 1985 Apr;4(4):421–430. doi: 10.3109/02713688509025156. [DOI] [PubMed] [Google Scholar]
- Michel H., Oesterhelt D., Henderson R. Orthorhombic two-dimensional crystal form of purple membrane. Proc Natl Acad Sci U S A. 1980 Jan;77(1):338–342. doi: 10.1073/pnas.77.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller T. M., Goodenough D. A. Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol. 1986 Jan;102(1):194–199. doi: 10.1083/jcb.102.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson B. J., Takemoto L. J., Hunkapiller M. W., Hood L. E., Revel J. P. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions. Cell. 1983 Mar;32(3):967–978. doi: 10.1016/0092-8674(83)90081-8. [DOI] [PubMed] [Google Scholar]
- Nikaido H., Rosenberg E. Y. Functional reconstitution of lens gap junction proteins into proteoliposomes. J Membr Biol. 1985;85(1):87–92. doi: 10.1007/BF01872008. [DOI] [PubMed] [Google Scholar]
- Noda M., Numa S. Structure and function of sodium channel. J Recept Res. 1987;7(1-4):467–497. doi: 10.3109/10799898709054998. [DOI] [PubMed] [Google Scholar]
- Okinami S. Freeze-fracture replica of the primate lens fibers. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978 Dec 8;209(1):51–58. doi: 10.1007/BF00419162. [DOI] [PubMed] [Google Scholar]
- Paul D. L., Goodenough D. A. Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol. 1983 Mar;96(3):625–632. doi: 10.1083/jcb.96.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol. 1986 Jul;103(1):123–134. doi: 10.1083/jcb.103.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peracchia C. Calcium effects on gap junction structure and cell coupling. Nature. 1978 Feb 16;271(5646):669–671. doi: 10.1038/271669a0. [DOI] [PubMed] [Google Scholar]
- Peracchia C., Girsch S. J. Is the C-terminal arm of lens gap junction channel protein the channel gate? Biochem Biophys Res Commun. 1985 Dec 17;133(2):688–695. doi: 10.1016/0006-291x(85)90959-3. [DOI] [PubMed] [Google Scholar]
- Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol. 1980 Dec;87(3 Pt 1):708–718. doi: 10.1083/jcb.87.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philipson B. T., Hanninen L., Balazs E. A. Cell contacts in human and bovine lenses. Exp Eye Res. 1975 Sep;21(3):205–219. doi: 10.1016/0014-4835(75)90091-3. [DOI] [PubMed] [Google Scholar]
- Rae J. L., Kuszak J. R. The electrical coupling of epithelium and fibers in the frog lens. Exp Eye Res. 1983 Mar;36(3):317–326. doi: 10.1016/0014-4835(83)90114-8. [DOI] [PubMed] [Google Scholar]
- Rae J. L. The application of patch clamp methods to ocular epithelia. Curr Eye Res. 1985 Apr;4(4):409–420. doi: 10.3109/02713688509025155. [DOI] [PubMed] [Google Scholar]
- Rae J. L. The electrophysiology of the crystalline lens. Curr Top Eye Res. 1979;1:37–90. [PubMed] [Google Scholar]
- Sas D. F., Sas M. J., Johnson K. R., Menko A. S., Johnson R. G. Junctions between lens fiber cells are labeled with a monoclonal antibody shown to be specific for MP26. J Cell Biol. 1985 Jan;100(1):216–225. doi: 10.1083/jcb.100.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scaglione B. A., Rintoul D. A. A fluorescence-quenching assay for measuring permeability of reconstituted lens MIP26. Invest Ophthalmol Vis Sci. 1989 May;30(5):961–966. [PubMed] [Google Scholar]
- Schuetze S. M., Goodenough D. A. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. J Cell Biol. 1982 Mar;92(3):694–705. doi: 10.1083/jcb.92.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon S. A., Zampighi G., McIntosh T. J., Costello M. J., Ting-beall H. P., Robertson J. D. The structure of junctions between lens fiber cells. Biosci Rep. 1982 May;2(5):333–341. doi: 10.1007/BF01115119. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Harris A. L., Bennett M. V. Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):77–93. doi: 10.1085/jgp.77.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spray D. C., Saez J. C., Brosius D., Bennett M. V., Hertzberg E. L. Isolated liver gap junctions: gating of transjunctional currents is similar to that in intact pairs of rat hepatocytes. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5494–5497. doi: 10.1073/pnas.83.15.5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stroud R. M. Topological mapping and the ionic channel in an acetylcholine receptor. Soc Gen Physiol Ser. 1987;41:67–75. [PubMed] [Google Scholar]
- Swenson K. I., Jordan J. R., Beyer E. C., Paul D. L. Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell. 1989 Apr 7;57(1):145–155. doi: 10.1016/0092-8674(89)90180-3. [DOI] [PubMed] [Google Scholar]
- Wong M. M., Robertson N. P., Horwitz J. Heat induced aggregation of the sodium dodecyl sulfate-solubilized main intrinsic polypeptide isolated from bovine lens plasma membrane. Biochem Biophys Res Commun. 1978 Sep 14;84(1):158–165. doi: 10.1016/0006-291x(78)90277-2. [DOI] [PubMed] [Google Scholar]
- Young J. D., Cohn Z. A., Gilula N. B. Functional assembly of gap junction conductance in lipid bilayers: demonstration that the major 27 kd protein forms the junctional channel. Cell. 1987 Mar 13;48(5):733–743. doi: 10.1016/0092-8674(87)90071-7. [DOI] [PubMed] [Google Scholar]
- Zampighi G. A., Hall J. E., Ehring G. R., Simon S. A. The structural organization and protein composition of lens fiber junctions. J Cell Biol. 1989 Jun;108(6):2255–2275. doi: 10.1083/jcb.108.6.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zampighi G. A., Hall J. E., Kreman M. Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8468–8472. doi: 10.1073/pnas.82.24.8468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zampighi G., Corless J. M., Robertson J. D. On gap junction structure. J Cell Biol. 1980 Jul;86(1):190–198. doi: 10.1083/jcb.86.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zampighi G., Simon S. A., Robertson J. D., McIntosh T. J., Costello M. J. On the structural organization of isolated bovine lens fiber junctions. J Cell Biol. 1982 Apr;93(1):175–189. doi: 10.1083/jcb.93.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
