Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Oct 1;96(4):789–808. doi: 10.1085/jgp.96.4.789

Regulation of the formation and water permeability of endosomes from toad bladder granular cells

PMCID: PMC2229009  PMID: 1979609

Abstract

Osmotic water permeability (Pf) in toad bladder is regulated by the vasopressin (VP)-dependent movement of vesicles containing water channels between the cytoplasm and apical membrane of granular cells. Apical endosomes formed in the presence of serosal VP have the highest Pf of any biological or artificial membrane (Shi and Verkman. 1989. J. Gen. Physiol. 94:1101-1115). We examine here: (a) the influence of protein kinase A and C effectors on transepithelial Pf (Pfte) in intact bladders and on the number and Pf of labeled endosomes, and (b) whether endosome Pf can be modified physically or biochemically. In paired hemibladder studies, Pfte induced by maximal serosal VP (50 mU/ml, 0.03 cm/s) was not different than that induced by 8-Br-cAMP (1 mM), forskolin (50 microM), VP + 8-Br-cAMP, or VP + forskolin. Pf was measured in endosomes labeled in intact bladders with carboxyfluorescein by a stopped-flow, fluorescence-quenching assay using an isolated microsomal suspension; the number and Pf (0.08-0.11 cm/s, 18 degrees C) of labeled endosomes was not different in bladders treated with VP, forskolin, and 8-Br-cAMP. Protein kinase C activation by 1 microM mucosal phorbol myristate acetate (PMA) induced submaximal bladder Pfte (0.015 cm/s) and endosome Pf (0.022 cm/s) in the absence of VP, but had little effect on maximal Pfte and endosome Pf induced by VP. However, PMA increased by threefold the number of apical endosomes with high Pf formed in response to serosal VP. Pf of endosomes containing the VP-sensitive water channel decreased fourfold by increasing membrane fluidity with hexanol or chloroform (0-75 mM); Pf of phosphatidylcholine liposomes (0.002 cm/s) increased 2.5-fold under the same conditions. Endosome Pf was mildly pH dependent, strongly inhibited by HgCl2, but not significantly altered by GTP gamma S, Ca, ATP + protein kinase A, and phosphatase action. We conclude that: (a) water channels cycled in endocytic vesicles are functional and not subject to physiological regulation, (b) VP and forskolin do not have cAMP-independent cellular actions, (c) activation of protein kinase C stimulates trafficking of water channels, but does not increase the number of apical membrane water channels induced by maximal VP, and (d) water channel function is sensitive to membrane fluidity. By using VP and PMA together, large quantities of endosomes containing the VP- sensitive water channel are labeled with fluid-phase endocytic markers.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando Y., Breyer M. D., Jacobson H. R. Dose-dependent heterogenous actions of vasopressin in rabbit cortical collecting ducts. Am J Physiol. 1989 Apr;256(4 Pt 2):F556–F562. doi: 10.1152/ajprenal.1989.256.4.F556. [DOI] [PubMed] [Google Scholar]
  2. Ando Y., Jacobson H. R., Breyer M. D. Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. J Clin Invest. 1987 Aug;80(2):590–593. doi: 10.1172/JCI113110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENTLEY P. J. The effects of neurohypophysial extracts on the water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol. 1958 Sep;17(3):201–209. doi: 10.1677/joe.0.0170201. [DOI] [PubMed] [Google Scholar]
  4. Benga G., Popescu O., Pop V. I. Water exchange through erythrocyte membranes. V. Incubation with papain prevents the P-chloromercuri-benzensulfonate inhibition of water diffusion studied by a nuclear magnetic resonance technique. Cell Biol Int Rep. 1983 Oct;7(10):807–818. doi: 10.1016/0309-1651(83)90184-4. [DOI] [PubMed] [Google Scholar]
  5. Bourguet J., Chevalier J., Hugon J. S. Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys J. 1976 Jun;16(6):627–639. doi: 10.1016/S0006-3495(76)85717-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D., Grosso A., DeSousa R. C. Correlation between water flow and intramembrane particle aggregates in toad epidermis. Am J Physiol. 1983 Nov;245(5 Pt 1):C334–C342. doi: 10.1152/ajpcell.1983.245.5.C334. [DOI] [PubMed] [Google Scholar]
  7. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  8. Chen P. Y., Pearce D., Verkman A. S. Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry. 1988 Jul 26;27(15):5713–5718. doi: 10.1021/bi00415a048. [DOI] [PubMed] [Google Scholar]
  9. Chevalier J., Bourguet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974;152(2):129–140. doi: 10.1007/BF00224690. [DOI] [PubMed] [Google Scholar]
  10. Chevalier J., Parisi M., Bourguet J. The rate-limiting step in hydrosmotic response of frog urinary bladder. Cell Tissue Res. 1983;228(2):345–355. doi: 10.1007/BF00204884. [DOI] [PubMed] [Google Scholar]
  11. Dillingham M. A., Kim J. K., Horster M. F., Anderson R. J. Forskolin increases osmotic water permeability of rabbit cortical collecting tubule. J Membr Biol. 1984;80(3):243–248. doi: 10.1007/BF01868442. [DOI] [PubMed] [Google Scholar]
  12. Dix J. A., Ausiello D. A., Jung C. Y., Verkman A. S. Target analysis studies of red cell water and urea transport. Biochim Biophys Acta. 1985 Dec 5;821(2):243–252. doi: 10.1016/0005-2736(85)90093-8. [DOI] [PubMed] [Google Scholar]
  13. Eggena P. Glutaraldehyde-fixation method for determining the permeability to water of the toad urinary bladder. Endocrinology. 1972 Jul;91(1):240–246. doi: 10.1210/endo-91-1-240. [DOI] [PubMed] [Google Scholar]
  14. Forman S. A., Verkman A. S., Dix J. A., Solomon A. K. n-Alkanols and halothane inhibit red cell anion transport and increase band 3 conformational change rate. Biochemistry. 1985 Aug 27;24(18):4859–4866. doi: 10.1021/bi00339a020. [DOI] [PubMed] [Google Scholar]
  15. Fushimi K., Dix J. A., Verkman A. S. Cell membrane fluidity in the intact kidney proximal tubule measured by orientation-independent fluorescence anisotropy imaging. Biophys J. 1990 Feb;57(2):241–254. doi: 10.1016/S0006-3495(90)82527-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Golchini K., Kurtz I. NH3 permeation through the apical membrane of MDCK cells is via a lipid pathway. Am J Physiol. 1988 Jul;255(1 Pt 2):F135–F141. doi: 10.1152/ajprenal.1988.255.1.F135. [DOI] [PubMed] [Google Scholar]
  17. Handler J. S. Antidiuretic hormone moves membranes. Am J Physiol. 1988 Sep;255(3 Pt 2):F375–F382. doi: 10.1152/ajprenal.1988.255.3.F375. [DOI] [PubMed] [Google Scholar]
  18. Harris H. W., Jr, Handler J. S. The role of membrane turnover in the water permeability response to antidiuretic hormone. J Membr Biol. 1988 Aug;103(3):207–216. doi: 10.1007/BF01993980. [DOI] [PubMed] [Google Scholar]
  19. Harris H. W., Jr, Murphy H. R., Willingham M. C., Handler J. S. Isolation and characterization of specialized regions of toad urinary bladder apical plasma membrane involved in the water permeability response to antidiuretic hormone. J Membr Biol. 1987;96(2):175–186. doi: 10.1007/BF01869243. [DOI] [PubMed] [Google Scholar]
  20. Harris H. W., Jr, Wade J. B., Handler J. S. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone-elicited water permeability increase in the toad urinary bladder. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1942–1946. doi: 10.1073/pnas.85.6.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harris H. W., Jr, Wade J. B., Handler J. S. Transepithelial water flow regulates apical membrane retrieval in antidiuretic hormone-stimulated toad urinary bladder. J Clin Invest. 1986 Sep;78(3):703–712. doi: 10.1172/JCI112630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Illsley N. P., Lin H. Y., Verkman A. S. Lipid-phase structure in epithelial cell membranes: comparison of renal brush border and basolateral membranes. Biochemistry. 1988 Mar 22;27(6):2077–2083. doi: 10.1021/bi00406a039. [DOI] [PubMed] [Google Scholar]
  23. Ives H. E., Verkman A. S. Effects of membrane fluidizing agents on renal brush border proton permeability. Am J Physiol. 1985 Dec;249(6 Pt 2):F933–F940. doi: 10.1152/ajprenal.1985.249.6.F933. [DOI] [PubMed] [Google Scholar]
  24. Kachadorian W. A., Casey C., DiScala V. A. Time course of ADH-induced intramembranous particle aggregation in toad urinary bladder. Am J Physiol. 1978 Jun;234(6):F461–F465. doi: 10.1152/ajprenal.1978.234.6.F461. [DOI] [PubMed] [Google Scholar]
  25. Kachadorian W. A., Coleman R. A., Wade J. B. Water permeability and particle aggregates in ADH-, cAMP-, and forskolin-treated toad bladder. Am J Physiol. 1987 Jul;253(1 Pt 2):F120–F125. doi: 10.1152/ajprenal.1987.253.1.F120. [DOI] [PubMed] [Google Scholar]
  26. Kachadorian W. A., Levine S. D., Wade J. B., Di Scala V. A., Hays R. M. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest. 1977 Mar;59(3):576–581. doi: 10.1172/JCI108673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kachadorian W. A., Muller J., Ellis S. J. Time-dependent attenuation of water flow in antidiuretic hormone-treated toad bladder. Am J Physiol. 1986 May;250(5 Pt 2):F845–F849. doi: 10.1152/ajprenal.1986.250.5.F845. [DOI] [PubMed] [Google Scholar]
  28. Kachadorian W. A., Sariban-Sohraby S., Spring K. R. Regulation of water permeability in toad urinary bladder at two barriers. Am J Physiol. 1985 Feb;248(2 Pt 2):F260–F265. doi: 10.1152/ajprenal.1985.248.2.F260. [DOI] [PubMed] [Google Scholar]
  29. Kuwahara M., Berry C. A., Verkman A. S. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique. Biophys J. 1988 Oct;54(4):595–602. doi: 10.1016/S0006-3495(88)82994-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kuwahara M., Verkman A. S. Pre-steady-state analysis of the turn-on and turn-off of water permeability in the kidney collecting tubule. J Membr Biol. 1989 Aug;110(1):57–65. doi: 10.1007/BF01870993. [DOI] [PubMed] [Google Scholar]
  31. Lencer W. I., Verkman A. S., Arnaout M. A., Ausiello D. A., Brown D. Endocytic vesicles from renal papilla which retrieve the vasopressin-sensitive water channel do not contain a functional H+ ATPase. J Cell Biol. 1990 Aug;111(2):379–389. doi: 10.1083/jcb.111.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Levine S. D., Jacoby M. Comparison of effects of forskolin, cAMP, and vasopressin on Pf/Pd(w) of toad urinary bladder luminal membrane. Am J Physiol. 1987 Feb;252(2 Pt 2):F357–F360. doi: 10.1152/ajprenal.1987.252.2.F357. [DOI] [PubMed] [Google Scholar]
  33. Masur S. K., Massardo S. ADH and phorbol ester increase immunolabeling of the toad bladder apical membrane by antibodies made to granules. J Membr Biol. 1987;96(3):193–198. doi: 10.1007/BF01869301. [DOI] [PubMed] [Google Scholar]
  34. Masur S. K., Sapirstein V., Rivero D. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder. Biochim Biophys Acta. 1985 Dec 5;821(2):286–296. doi: 10.1016/0005-2736(85)90098-7. [DOI] [PubMed] [Google Scholar]
  35. Muller J., Kachadorian W. A., DiScala V. A. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J Cell Biol. 1980 Apr;85(1):83–95. doi: 10.1083/jcb.85.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nadler S. P., Hebert S. C., Brenner B. M. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am J Physiol. 1986 Jan;250(1 Pt 2):F127–F135. doi: 10.1152/ajprenal.1986.250.1.F127. [DOI] [PubMed] [Google Scholar]
  37. Parisi M., Bourguet J. Effects of cellular acidification on ADH-induced intramembrane particle aggregates. Am J Physiol. 1984 Jan;246(1 Pt 1):C157–C159. doi: 10.1152/ajpcell.1984.246.1.C157. [DOI] [PubMed] [Google Scholar]
  38. Parisi M., Montoreano R., Chevalier J., Bourguet J. Cellular pH and water permeability control in frog urinary bladder. A possible action on the water pathway. Biochim Biophys Acta. 1981 Nov 6;648(2):267–274. doi: 10.1016/0005-2736(81)90043-2. [DOI] [PubMed] [Google Scholar]
  39. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  40. Shi L. B., Brown D., Verkman A. S. Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin-sensitive water channel. J Gen Physiol. 1990 May;95(5):941–960. doi: 10.1085/jgp.95.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shi L. B., Verkman A. S. Very high water permeability in vasopressin-induced endocytic vesicles from toad urinary bladder. J Gen Physiol. 1989 Dec;94(6):1101–1115. doi: 10.1085/jgp.94.6.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Valdivia H. H., Dubinsky W. P., Coronado R. Reconstitution and phosphorylation of chloride channels from airway epithelium membranes. Science. 1988 Dec 9;242(4884):1441–1444. doi: 10.1126/science.2462280. [DOI] [PubMed] [Google Scholar]
  43. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  44. Verkman A. S., Masur S. K. Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules. J Membr Biol. 1988 Sep;104(3):241–251. doi: 10.1007/BF01872326. [DOI] [PubMed] [Google Scholar]
  45. Verkman A. S. Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol. 1989 Nov;257(5 Pt 1):C837–C850. doi: 10.1152/ajpcell.1989.257.5.C837. [DOI] [PubMed] [Google Scholar]
  46. Verkman A. S., Weyer P., Brown D., Ausiello D. A. Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J Biol Chem. 1989 Dec 5;264(34):20608–20613. [PubMed] [Google Scholar]
  47. Wade J. B., McCusker C., Coleman R. A. Evaluation of granule exocytosis in toad urinary bladder. Am J Physiol. 1986 Sep;251(3 Pt 1):C380–C386. doi: 10.1152/ajpcell.1986.251.3.C380. [DOI] [PubMed] [Google Scholar]
  48. Ye R. G., Shi L. B., Lencer W. I., Verkman A. S. Functional colocalization of water channels and proton pumps in endosomes from kidney proximal tubule. J Gen Physiol. 1989 May;93(5):885–902. doi: 10.1085/jgp.93.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang R. B., Logee K. A., Verkman A. S. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem. 1990 Sep 15;265(26):15375–15378. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES