Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Sep 1;98(3):429–464. doi: 10.1085/jgp.98.3.429

Q beta and Q gamma components of intramembranous charge movement in frog cut twitch fibers

PMCID: PMC2229057  PMID: 1761969

Abstract

Intramembranous charge movement was measured in frog cut twitch fibers mounted in a double Vaseline-gap chamber with a TEA.Cl solution at 13- 14 degrees C in the central pool. When a fiber was depolarized from a holding potential of -90 mV to a potential near -60 mV, the current from intramembranous charge movement was outward in direction and had an early, rapid component and a late, more slowly developing component, referred to as I beta and I gamma, respectively (1979. J. Physiol. [Lond.]. 289:83-97). When the pulse to -60 mV was preceded by a 100-600- ms pulse to -40 mV, early I beta and late I gamma components were also observed, but in the inward direction. The shape of the Q gamma vs. voltage curve can be estimated with this two-pulse protocol. The first pulse to voltage V allows the amounts of Q beta and Q gamma charge in the active state to change from their respective resting levels, Q beta (-90) and Q gamma (-90), to new steady levels, Q beta (V) and Q gamma (V). A second 100-120-ms pulse, usually to -60 mV, allows the amount of Q beta charge in the active state to change from Q beta (V) to Q beta (- 60) but is not sufficiently long for the amount of Q gamma charge to change completely from Q gamma (V) to Q gamma (-60). The difference between the amount of Q gamma charge at the end of the second pulse and Q gamma (-60) is estimated from the OFF charge that is observed on repolarization to -90 mV. The OFF charge vs. voltage data were fitted, with gap corrections, with a Boltzmann distribution function plus a constant. The mean values of V (the potential at which, in the steady state, charge is distributed equally between the resting and active states) and k (the voltage dependence factor) were -59.2 mV (SEM, 1.1 mV) and 1.2 mV (SEM, 0.6 mV), respectively. The one-pulse charge vs. voltage data from the same fibers were fitted with a sum of two Boltzmann functions (1990. J. Gen. Physiol. 96:257-297). The mean values of V and k for the steeply voltage-dependent Boltzmann function, which is likely to be associated with the Q gamma component of charge, were -55.3 mV (SEM, 1.3 mV) and 3.3 mV (SEM, 0.6 mV), respectively, similar to the corresponding values obtained with the two-pulse protocol.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.6 MB).


Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES