Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Sep 1;98(3):615–635. doi: 10.1085/jgp.98.3.615

Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers

PMCID: PMC2229059  PMID: 1761971

Abstract

Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension- generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).


Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES