Abstract
Oxygen transport in the Chinese hamster ovary (CHO) plasma membrane has been studied by observing the collision of molecular oxygen with nitroxide radical spin labels placed in the lipid bilayer portion of the membrane at various distances from the membrane surface using the long-pulse saturation-recovery electron spin resonance (ESR) technique. The collision rate was estimated for 5-, 12-, and 16-doxylstearic acids from spin-lattice relaxation times (T1) measured in the presence and absence of molecular oxygen. Profiles of the local oxygen transport parameters across the membrane were obtained showing that the oxygen diffusion-concentration product is lower than in water for all locations at 37 degrees C. From oxygen transport parameter profiles, the membrane oxygen permeability coefficients were estimated according to the procedure developed earlier by Subczynski et al. (Subczynski, W. K., J. S. Hyde, and A. Kusumi. 1989. Proceedings of the National Academy of Sciences, USA. 86:4474-4478). At 37 degrees C, the oxygen permeability coefficient for the plasma membrane was found to be 42 cm/s, about two times lower than for a water layer of the same thickness as the membrane. The oxygen concentration difference across the CHO plasma membrane at physiological conditions is in the nanomolar range. It is concluded that oxygen permeation across the cell plasma membrane cannot be a rate-limiting step for cellular respiration. Correlations of the form PM = cKs between membrane permeabilities PM of small nonelectrolyte solutes of mol wt less than 50, including oxygen, and their partition coefficients K into hexadecane and olive oil are reported. Hexadecane: c = 26 cm/s, s = 0.95; olive oil: c = 23 cm/s, s = 1.56. These values of c and s differ from those reported in the literature for solutes of 50 less than mol wt less than 300 (Walter, A., and J. Gutknecht. 1986. Journal of Membrane Biology. 90:207-217). It is concluded that oxygen permeability through membranes can be reliably predicted from measurement of partition coefficients.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenbach C., Marti T., Khorana H. G., Hubbell W. L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science. 1990 Jun 1;248(4959):1088–1092. doi: 10.1126/science.2160734. [DOI] [PubMed] [Google Scholar]
- Bales B. L., Leon V. Magnetic resonance studies of eukaryotic cells. III. Spin labeled fatty acids in the plasma membrane. Biochim Biophys Acta. 1978 May 4;509(1):90–99. doi: 10.1016/0005-2736(78)90010-x. [DOI] [PubMed] [Google Scholar]
- Bales B. L., Lesin E. S., Oppenheimer S. B. On cell membrane lipid fluidity and plant lectin agglutinability. A spin label study of mouse ascites tumor cells. Biochim Biophys Acta. 1977 Mar 1;465(2):400–407. doi: 10.1016/0005-2736(77)90089-x. [DOI] [PubMed] [Google Scholar]
- Battino R., Evans F. D., Danforth W. F. The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc. 1968 Dec;45(12):830–833. doi: 10.1007/BF02540163. [DOI] [PubMed] [Google Scholar]
- Coin J. T., Olson J. S. The rate of oxygen uptake by human red blood cells. J Biol Chem. 1979 Feb 25;254(4):1178–1190. [PubMed] [Google Scholar]
- Cress A. E., Culver P. S., Moon T. E., Gerner E. W. Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in culture. Cancer Res. 1982 May;42(5):1716–1721. [PubMed] [Google Scholar]
- Cress A. E., Gerner E. W. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature. 1980 Feb 14;283(5748):677–679. doi: 10.1038/283677a0. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):121–154. doi: 10.1007/BF01870176. [DOI] [PubMed] [Google Scholar]
- Dix J. A., Kivelson D., Diamond J. M. Molecular motion of small nonelectrolyte molecules in lecithin bilayers. J Membr Biol. 1978 Jun 9;40(4):315–342. doi: 10.1007/BF01874162. [DOI] [PubMed] [Google Scholar]
- Dodd N. J., Schor S. L., Rushton G. The effects of a collagenous extracellular matrix on fibroblast membrane organization. An ESR spin label study. Exp Cell Res. 1982 Oct;141(2):421–431. doi: 10.1016/0014-4827(82)90230-0. [DOI] [PubMed] [Google Scholar]
- Fischkoff S., Vanderkooi J. M. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol. 1975 May;65(5):663–676. doi: 10.1085/jgp.65.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Froncisz W., Lai C. S., Hyde J. S. Spin-label oximetry: kinetic study of cell respiration using a rapid-passage T1-sensitive electron spin resonance display. Proc Natl Acad Sci U S A. 1985 Jan;82(2):411–415. doi: 10.1073/pnas.82.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaffney B. J. Fatty acid chain flexibility in the membranes of normal and transformed fibroblasts. Proc Natl Acad Sci U S A. 1975 Feb;72(2):664–668. doi: 10.1073/pnas.72.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glockner J. F., Swartz H. M., Pals M. A. Oxygen gradients in CHO cells: measurement and characterization by electron spin resonance. J Cell Physiol. 1989 Sep;140(3):505–511. doi: 10.1002/jcp.1041400315. [DOI] [PubMed] [Google Scholar]
- Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Bisson M. A., Tosteson F. C. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol. 1977 Jun;69(6):779–794. doi: 10.1085/jgp.69.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill R. P., Pallavicini M. G. Hypoxia and the radiation response of tumors. Adv Exp Med Biol. 1983;159:17–35. doi: 10.1007/978-1-4684-7790-0_3. [DOI] [PubMed] [Google Scholar]
- Huxley V. H., Kutchai H. Effect of diffusion boundary layers on the initial uptake of O2 by red cells. Theory versus experiment. Microvasc Res. 1983 Jul;26(1):89–107. doi: 10.1016/0026-2862(83)90058-4. [DOI] [PubMed] [Google Scholar]
- Huxley V. H., Kutchai H. The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes. J Physiol. 1981 Jul;316:75–83. doi: 10.1113/jphysiol.1981.sp013773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones D. P., Kennedy F. G. Intracellular O2 gradients in cardiac myocytes. Lack of a role for myoglobin in facilitation of intracellular O2 diffusion. Biochem Biophys Res Commun. 1982 Mar 30;105(2):419–424. doi: 10.1016/0006-291x(82)91450-4. [DOI] [PubMed] [Google Scholar]
- Juliano R. L., Behar-Bannelier M. An evaluation of techniques for labelling the surface proteins of cultured mammalian cells. Biochim Biophys Acta. 1975 Jan 28;375(2):249–267. doi: 10.1016/0005-2736(75)90193-5. [DOI] [PubMed] [Google Scholar]
- Kalyanaraman B., Feix J. B., Sieber F., Thomas J. P., Girotti A. W. Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci U S A. 1987 May;84(9):2999–3003. doi: 10.1073/pnas.84.9.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan J., Canonico P. G., Caspary W. J. Electron spin resonance studies of spin-labeled mammalian cells by detection of surface-membrane signals. Proc Natl Acad Sci U S A. 1973 Jan;70(1):66–70. doi: 10.1073/pnas.70.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz I. R., Wittenberg J. B., Wittenberg B. A. Monoamine oxidase, an intracellular probe of oxygen pressure in isolated cardiac myocytes. J Biol Chem. 1984 Jun 25;259(12):7504–7509. [PubMed] [Google Scholar]
- Katz Y., Diamond J. M. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):101–120. doi: 10.1007/BF01870175. [DOI] [PubMed] [Google Scholar]
- Kusumi A., Subczynski W. K., Hyde J. S. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1854–1858. doi: 10.1073/pnas.79.6.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai C. S., Hopwood L. E., Hyde J. S., Lukiewicz S. ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1166–1170. doi: 10.1073/pnas.79.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai C. S., Hopwood L. E., Swartz H. M. ESR studies on membrane fluidity of Chinese hamster ovary cells grown on microcarriers and in suspension. Exp Cell Res. 1980 Dec;130(2):437–442. doi: 10.1016/0014-4827(80)90022-1. [DOI] [PubMed] [Google Scholar]
- Lai C. S., Hopwood L. E., Swartz H. M. Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle. Biochim Biophys Acta. 1980 Oct 16;602(1):117–126. doi: 10.1016/0005-2736(80)90294-1. [DOI] [PubMed] [Google Scholar]
- Levine Y. K., Wilkins M. H. Structure of oriented lipid bilayers. Nat New Biol. 1971 Mar 17;230(11):69–72. doi: 10.1038/newbio230069a0. [DOI] [PubMed] [Google Scholar]
- Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
- McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- McDonald G. G., Vanderkooi J. M., Oberholtzer J. C. Oxygen diffusion in phospholipid artificial membranes studied by Fourier transform nuclear magnetic resonance. Arch Biochem Biophys. 1979 Aug;196(1):281–283. doi: 10.1016/0003-9861(79)90577-0. [DOI] [PubMed] [Google Scholar]
- Merkle H., Subczynski W. K., Kusumi A. Dynamic fluorescence quenching studies on lipid mobilities in phosphatidylcholine-cholesterol membranes. Biochim Biophys Acta. 1987 Feb 26;897(2):238–248. doi: 10.1016/0005-2736(87)90420-2. [DOI] [PubMed] [Google Scholar]
- Morse P. D., 2nd, Swartz H. M. Measurement of intracellular oxygen concentration using the spin label TEMPOL. Magn Reson Med. 1985 Apr;2(2):114–127. doi: 10.1002/mrm.1910020203. [DOI] [PubMed] [Google Scholar]
- Nettleton D. O., Morse P. D., 2nd, Dobrucki J. W., Swartz H. M., Dodd N. J. Distribution of 5-doxylstearic acid in the membranes of mammalian cells. Biochim Biophys Acta. 1988 Oct 6;944(2):315–320. doi: 10.1016/0005-2736(88)90446-4. [DOI] [PubMed] [Google Scholar]
- Power G. G., Stegall H. Solubility of gases in human red blood cell ghosts. J Appl Physiol. 1970 Aug;29(2):145–149. doi: 10.1152/jappl.1970.29.2.145. [DOI] [PubMed] [Google Scholar]
- Rintoul D. A., Sklar L. A., Simoni R. D. Membrane lipid modification of chinese hamster ovary cells. Thermal properties of membrane phospholipids. J Biol Chem. 1978 Oct 25;253(20):7447–7452. [PubMed] [Google Scholar]
- Skulachev V. P. Power transmission along biological membranes. J Membr Biol. 1990 Mar;114(2):97–112. doi: 10.1007/BF01869092. [DOI] [PubMed] [Google Scholar]
- Smotkin E. S., Moy F. T., Plachy W. Z. Dioxygen solubility in aqueous phosphatidylcholine dispersions. Biochim Biophys Acta. 1991 Jan 9;1061(1):33–38. doi: 10.1016/0005-2736(91)90265-a. [DOI] [PubMed] [Google Scholar]
- Struve W. G., Arneson R. M., Chenevey J. E., Cartwright C. K. The effect of culture conditions on the fluidity of mouse neuroblastoma membranes as estimated by spin label studies. Exp Cell Res. 1977 Oct 15;109(2):381–387. doi: 10.1016/0014-4827(77)90017-9. [DOI] [PubMed] [Google Scholar]
- Subczynski W. K., Hyde J. S. Concentration of oxygen in lipid bilayers using a spin-label method. Biophys J. 1983 Mar;41(3):283–286. doi: 10.1016/S0006-3495(83)84439-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subczynski W. K., Hyde J. S. Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys J. 1984 Apr;45(4):743–748. doi: 10.1016/S0006-3495(84)84217-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subczynski W. K., Hyde J. S., Kusumi A. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry. 1991 Sep 3;30(35):8578–8590. doi: 10.1021/bi00099a013. [DOI] [PubMed] [Google Scholar]
- Subczynski W. K., Hyde J. S., Kusumi A. Oxygen permeability of phosphatidylcholine--cholesterol membranes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4474–4478. doi: 10.1073/pnas.86.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subczynski W. K., Hyde J. S. The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method. Biochim Biophys Acta. 1981 May 6;643(2):283–291. [PubMed] [Google Scholar]
- Subczynski W. K., Markowska E., Sielewiesiuk J. Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta. 1991 Sep 10;1068(1):68–72. doi: 10.1016/0005-2736(91)90061-c. [DOI] [PubMed] [Google Scholar]
- Tamura M., Oshino N., Chance B., Silver I. A. Optical measurements of intracellular oxygen concentration of rat heart in vitro. Arch Biochem Biophys. 1978 Nov;191(1):8–22. doi: 10.1016/0003-9861(78)90062-0. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M., Wright W. W., Erecinska M. Oxygen gradients in mitochondria examined with delayed luminescence from excited-state triplet probes. Biochemistry. 1990 Jun 5;29(22):5332–5338. doi: 10.1021/bi00474a018. [DOI] [PubMed] [Google Scholar]
- Walter A., Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–217. doi: 10.1007/BF01870127. [DOI] [PubMed] [Google Scholar]
