Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Nov 1;102(5):833–857. doi: 10.1085/jgp.102.5.833

Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes

PMCID: PMC2229182  PMID: 8301259

Abstract

Voltage-clamp techniques were used to study the membrane currents elicited by follicle stimulating hormone (FSH) and acetylcholine (ACh) in follicle-enclosed oocytes of Xenopus laevis (follicles). Both agonists caused complex responses that were more evident when the follicles were in hypotonic Ringer solution (HR; 190.4 mosM). In this medium, currents activated by FSH regularly showed three phases whereas currents activated by ACh displayed three to six phases. At a holding potential of -60 mV, FSH, and ACh responses involved combinations of inward and outward currents. Both FSH and ACh responses included a slow smooth inward component that was associated with an increase in membrane conductance, mainly to Cl- (S(in)). This current was strongly dependent on the osmolarity of the external solution: an increase in osmolarity of the HR solution of 18-20 mosM caused a 50% decrease in S(in). In contrast, a fast and transient Cl- current (F(in)) specifically elicited by ACh was not dependent on osmolarity. Both, F(in) and S(in) currents required the presence of follicular cells, since defolliculation using three different methods abolished all the response to FSH and at least four components of the ACh responses. The membrane channels carrying F(in) and oscillatory Cl- currents elicited by stimulation of ACh or serum receptors, were much more permeable to I- and Br- than Cl-, whereas S(in) channels were equally permeable to these anions. Unlike the oscillatory Cl- currents generated in the oocyte itself, S(in) and F(in) currents in follicle-enclosed oocytes were not abolished by chelation of intracellular Ca2+, either with EGTA or BAPTA, which suggests that intracellular Ca2+ does not play a critical role in the activation of these currents. Our experiments show that S(in) and F(in) currents are quite distinct from the previously characterized oscillatory Cl- responses of oocytes. Moreover, the results strongly suggest that the FSH and ACh receptors, the Cl- channels mediating the F(in) and S(in) currents, together with the necessary elements for their activation, are all located in the follicular cells and not in the oocyte. Many aspects of follicular cell physiology in Xenopus laevis, and other species, are regulated by hormones and neurotransmitters, including FSH and ACh. The follicular Cl- currents described in this paper may play an important role in the follicular cell-oocyte development.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).


Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES