Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1996 Jul 1;108(1):13–26. doi: 10.1085/jgp.108.1.13

L-type Ca2+ channels access multiple open states to produce two components of Bay K 8644-dependent current in GH3 cells

PMCID: PMC2229299  PMID: 8817381

Abstract

To determine the number of L-channel populations responsible for producing the two components of whole-cell L-type Ca2+ channel current revealed by Bay K 8644 (Fass, D.M., and E.S. Levitan. 1996. J. Gen. Physiol. 108:1-11), L-type Ca2+ channel activity was recorded in cell- attached patches. Ensemble tail currents from most (six out of nine) single-channel patches had double-exponential time courses, with time constants that were similar to whole-cell tail current decay values. Also, in single-channel patches subjected to two different levels of depolarization, ensemble tail currents exactly reproduced the voltage dependence of activation of the two whole-cell components: The slow component is activated at more negative potentials than the fast component. In addition, deactivation of Bay K 8644-modified whole-cell L-current was slower after long (100-ms) depolarizations than after short (20-ms) depolarizations, and this phenomenon was also evident in ensemble tail currents from single L-channels. Thus, a single population of L-channels can produce the two components of macroscopic L-current deactivation. To determine how individual L-channels produce multiple macroscopic tail current components, we constructed ensemble tail currents from traces that contained a single opening upon repolarization and no reopenings. These ensemble tails were biexponential. This type of analysis also revealed that reopenings do not contribute to the slowing of tail current deactivation after long depolarizations. Thus, individual L-channels must have access to several open states to produce multiple macroscopic current components. We also obtained evidence that access to these open states can vary over time. Use of several open states may give L-channels the flexibility to participate in many cell functions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechem M., Hoffmann H. The molecular mode of action of the Ca agonist (-) BAY K 8644 on the cardiac Ca channel. Pflugers Arch. 1993 Aug;424(3-4):343–353. doi: 10.1007/BF00384362. [DOI] [PubMed] [Google Scholar]
  2. Droogmans G., Callewaert G. Ca2+-channel current and its modification by the dihydropyridine agonist BAY k 8644 in isolated smooth muscle cells. Pflugers Arch. 1986 Mar;406(3):259–265. doi: 10.1007/BF00640911. [DOI] [PubMed] [Google Scholar]
  3. Duchemin A. M., Enyeart J. A., Biagi B. A., Foster D. N., Mlinar B., Enyeart J. J. Ca2+ channel modulation and kinase-C activation in a pituitary cell line: induction of immediate early genes and inhibition of proliferation. Mol Endocrinol. 1992 Apr;6(4):563–571. doi: 10.1210/mend.6.4.1374838. [DOI] [PubMed] [Google Scholar]
  4. Enyeart J. J., Aizawa T., Hinkle P. M. Dihydropyridine Ca2+ antagonists: potent inhibitors of secretion from normal and transformed pituitary cells. Am J Physiol. 1985 May;248(5 Pt 1):C510–C519. doi: 10.1152/ajpcell.1985.248.5.C510. [DOI] [PubMed] [Google Scholar]
  5. Fass D. M., Levitan E. S. Bay K 8644 reveals two components of L-type Ca2+ channel current in clonal rat pituitary cells. J Gen Physiol. 1996 Jul;108(1):1–11. doi: 10.1085/jgp.108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forti L., Pietrobon D. Functional diversity of L-type calcium channels in rat cerebellar neurons. Neuron. 1993 Mar;10(3):437–450. doi: 10.1016/0896-6273(93)90332-l. [DOI] [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
  9. Kunze D. L., Ritchie A. K. Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells. J Membr Biol. 1990 Nov;118(2):171–178. doi: 10.1007/BF01868474. [DOI] [PubMed] [Google Scholar]
  10. Levitan E. S., Kramer R. H. Neuropeptide modulation of single calcium and potassium channels detected with a new patch clamp configuration. Nature. 1990 Dec 6;348(6301):545–547. doi: 10.1038/348545a0. [DOI] [PubMed] [Google Scholar]
  11. Liévano A., Bolden A., Horn R. Calcium channels in excitable cells: divergent genotypic and phenotypic expression of alpha 1-subunits. Am J Physiol. 1994 Aug;267(2 Pt 1):C411–C424. doi: 10.1152/ajpcell.1994.267.2.C411. [DOI] [PubMed] [Google Scholar]
  12. Mantegazza M., Fasolato C., Hescheler J., Pietrobon D. Stimulation of single L-type calcium channels in rat pituitary GH3 cells by thyrotropin-releasing hormone. EMBO J. 1995 Mar 15;14(6):1075–1083. doi: 10.1002/j.1460-2075.1995.tb07090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marks T. N., Jones S. W. Calcium currents in the A7r5 smooth muscle-derived cell line. An allosteric model for calcium channel activation and dihydropyridine agonist action. J Gen Physiol. 1992 Mar;99(3):367–390. doi: 10.1085/jgp.99.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  15. Mollard P., Theler J. M., Guérineau N., Vacher P., Chiavaroli C., Schlegel W. Cytosolic Ca2+ of excitable pituitary cells at resting potentials is controlled by steady state Ca2+ currents sensitive to dihydropyridines. J Biol Chem. 1994 Oct 7;269(40):25158–25164. [PubMed] [Google Scholar]
  16. Murphy T. H., Worley P. F., Baraban J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron. 1991 Oct;7(4):625–635. doi: 10.1016/0896-6273(91)90375-a. [DOI] [PubMed] [Google Scholar]
  17. Richard S., Charnet P., Nerbonne J. M. Interconversion between distinct gating pathways of the high threshold calcium channel in rat ventricular myocytes. J Physiol. 1993 Mar;462:197–228. doi: 10.1113/jphysiol.1993.sp019551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richard S., Tiaho F., Charnet P., Nargeot J., Nerbonne J. M. Two pathways for Ca2+ channel gating differentially modulated by physiological stimuli. Am J Physiol. 1990 Jun;258(6 Pt 2):H1872–H1881. doi: 10.1152/ajpheart.1990.258.6.H1872. [DOI] [PubMed] [Google Scholar]
  19. Scherübl H., Hescheler J. Steady-state currents through voltage-dependent, dihydropyridine-sensitive Ca2+ channels in GH3 pituitary cells. Proc Biol Sci. 1991 Aug 22;245(1313):127–131. doi: 10.1098/rspb.1991.0098. [DOI] [PubMed] [Google Scholar]
  20. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tanabe T., Adams B. A., Numa S., Beam K. G. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature. 1991 Aug 29;352(6338):800–803. doi: 10.1038/352800a0. [DOI] [PubMed] [Google Scholar]
  22. Tiaho F., Piot C., Nargeot J., Richard S. Regulation of the frequency-dependent facilitation of L-type Ca2+ currents in rat ventricular myocytes. J Physiol. 1994 Jun 1;477(Pt 2):237–251. doi: 10.1113/jphysiol.1994.sp020187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zidanic M., Fuchs P. A. Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J. 1995 Apr;68(4):1323–1336. doi: 10.1016/S0006-3495(95)80305-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES