Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Dec 1;106(6):1243–1263. doi: 10.1085/jgp.106.6.1243

Agonist-specific regulation of [Na+]i in pancreatic acinar cells

PMCID: PMC2229300  PMID: 8786359

Abstract

In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastie M. J., Delvaux M., Dufresne M., Saunier-Blache J. S., Vaysse N., Ribet A. Distinct activation of Na+-H+ exchange by gastrin and CCK peptide in acini from guinea pig. Am J Physiol. 1988 Jan;254(1 Pt 1):G25–G32. doi: 10.1152/ajpgi.1988.254.1.G25. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Dufresne M., Bastie M. J., Vaysse N., Creach Y., Hollande E., Ribet A. The amiloride sensitive Na+/H+ antiport in guinea pig pancreatic acini. Characterization and stimulation by caerulein. FEBS Lett. 1985 Jul 22;187(1):126–130. doi: 10.1016/0014-5793(85)81227-8. [DOI] [PubMed] [Google Scholar]
  4. Evans L. A., Pirani D., Cook D. I., Young J. A. Intraepithelial current flow in rat pancreatic secretory epithelia. Pflugers Arch. 1986;407 (Suppl 2):S107–S111. doi: 10.1007/BF00584938. [DOI] [PubMed] [Google Scholar]
  5. Foskett J. K., Melvin J. E. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science. 1989 Jun 30;244(4912):1582–1585. doi: 10.1126/science.2500708. [DOI] [PubMed] [Google Scholar]
  6. Green J., Yamaguchi D. T., Kleeman C. R., Muallem S. Cytosolic pH regulation in osteoblasts. Interaction of Na+ and H+ with the extracellular and intracellular faces of the Na+/H+ exchanger. J Gen Physiol. 1988 Aug;92(2):239–261. doi: 10.1085/jgp.92.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green J., Yamaguchi D. T., Kleeman C. R., Muallem S. Cytosolic pH regulation in osteoblasts. Regulation of anion exchange by intracellular pH and Ca2+ ions. J Gen Physiol. 1990 Jan;95(1):121–145. doi: 10.1085/jgp.95.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grinstein S., Foskett J. K. Ionic mechanisms of cell volume regulation in leukocytes. Annu Rev Physiol. 1990;52:399–414. doi: 10.1146/annurev.ph.52.030190.002151. [DOI] [PubMed] [Google Scholar]
  9. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  10. Hootman S. R., Brown M. E., Williams J. A. Phorbol esters and A23187 regulate Na+-K+-pump activity in pancreatic acinar cells. Am J Physiol. 1987 Apr;252(4 Pt 1):G499–G505. doi: 10.1152/ajpgi.1987.252.4.G499. [DOI] [PubMed] [Google Scholar]
  11. Hootman S. R., Ernst S. A., Williams J. A. Secretagogue regulation of Na+-K+ pump activity in pancreatic acinar cells. Am J Physiol. 1983 Sep;245(3):G339–G346. doi: 10.1152/ajpgi.1983.245.3.G339. [DOI] [PubMed] [Google Scholar]
  12. Hootman S. R., Ochs D. L., Williams J. A. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells. Am J Physiol. 1985 Oct;249(4 Pt 1):G470–G478. doi: 10.1152/ajpgi.1985.249.4.G470. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa T., Kanno T. Potassium transport across basolateral membrane of acinar cells in the perfused rat pancreas. Am J Physiol. 1991 Oct;261(4 Pt 1):G570–G577. doi: 10.1152/ajpgi.1991.261.4.G570. [DOI] [PubMed] [Google Scholar]
  14. Kasai H., Augustine G. J. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature. 1990 Dec 20;348(6303):735–738. doi: 10.1038/348735a0. [DOI] [PubMed] [Google Scholar]
  15. Maruyama Y., Petersen O. H. Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature. 1982 Nov 4;300(5887):61–63. doi: 10.1038/300061a0. [DOI] [PubMed] [Google Scholar]
  16. Muallem S., Loessberg P. A. Intracellular pH-regulatory mechanisms in pancreatic acinar cells. I. Characterization of H+ and HCO3- transporters. J Biol Chem. 1990 Aug 5;265(22):12806–12812. [PubMed] [Google Scholar]
  17. Muallem S., Loessberg P. A. Intracellular pH-regulatory mechanisms in pancreatic acinar cells. II. Regulation of H+ and HCO3- transporters by Ca2(+)-mobilizing agonists. J Biol Chem. 1990 Aug 5;265(22):12813–12819. [PubMed] [Google Scholar]
  18. O'Doherty J., Stark R. J. A transcellular route for Na-coupled Cl transport in secreting pancreatic acinar cells. Am J Physiol. 1983 Oct;245(4):G499–G503. doi: 10.1152/ajpgi.1983.245.4.G499. [DOI] [PubMed] [Google Scholar]
  19. Petersen O. H., Findlay I. Electrophysiology of the pancreas. Physiol Rev. 1987 Jul;67(3):1054–1116. doi: 10.1152/physrev.1987.67.3.1054. [DOI] [PubMed] [Google Scholar]
  20. Petersen O. H., Singh J. Acetylcholine-evoked potassium release in the mouse pancreas. J Physiol. 1985 Aug;365:319–329. doi: 10.1113/jphysiol.1985.sp015775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Petersen O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992 Mar;448:1–51. doi: 10.1113/jphysiol.1992.sp019028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Petersen O. H., Ueda N. Secretion of fluid and amylase in the perfused rat pancreas. J Physiol. 1977 Jan;264(3):819–835. doi: 10.1113/jphysiol.1977.sp011696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robertson M. A., Foskett J. K. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i. Am J Physiol. 1994 Jul;267(1 Pt 1):C146–C156. doi: 10.1152/ajpcell.1994.267.1.C146. [DOI] [PubMed] [Google Scholar]
  24. Seow K. T., Lingard J. M., Young J. A. Anionic basis of fluid secretion by rat pancreatic acini in vitro. Am J Physiol. 1986 Feb;250(2 Pt 1):G140–G148. doi: 10.1152/ajpgi.1986.250.2.G140. [DOI] [PubMed] [Google Scholar]
  25. Thorn P., Petersen O. H. Activation of nonselective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. J Gen Physiol. 1992 Jul;100(1):11–25. doi: 10.1085/jgp.100.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Trimble E. R., Bruzzone R., Biden T. J., Farese R. V. Secretin induces rapid increases in inositol trisphosphate, cytosolic Ca2+ and diacylglycerol as well as cyclic AMP in rat pancreatic acini. Biochem J. 1986 Oct 15;239(2):257–261. doi: 10.1042/bj2390257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whisenant N., Khademazad M., Muallem S. Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter. J Gen Physiol. 1993 Jun;101(6):889–908. doi: 10.1085/jgp.101.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wong M. M., Foskett J. K. Oscillations of cytosolic sodium during calcium oscillations in exocrine acinar cells. Science. 1991 Nov 15;254(5034):1014–1016. doi: 10.1126/science.1948071. [DOI] [PubMed] [Google Scholar]
  29. Zhang B. X., Zhao H., Loessberg P., Muallem S. Activation of the plasma membrane Ca2+ pump during agonist stimulation of pancreatic acini. J Biol Chem. 1992 Aug 5;267(22):15419–15425. [PubMed] [Google Scholar]
  30. Zhao H., Muallem S. Na+, K+, and Cl- transport in resting pancreatic acinar cells. J Gen Physiol. 1995 Dec;106(6):1225–1242. doi: 10.1085/jgp.106.6.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES