Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Dec 1;106(6):1225–1242. doi: 10.1085/jgp.106.6.1225

Na+, K+, and Cl- transport in resting pancreatic acinar cells

PMCID: PMC2229301  PMID: 8786358

Abstract

To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  2. Chao A. C., Dix J. A., Sellers M. C., Verkman A. S. Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts. Biophys J. 1989 Dec;56(6):1071–1081. doi: 10.1016/S0006-3495(89)82755-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chao A. C., Widdicombe J. H., Verkman A. S. Chloride conductive and cotransport mechanisms in cultures of canine tracheal epithelial cells measured by an entrapped fluorescent indicator. J Membr Biol. 1990 Feb;113(3):193–202. doi: 10.1007/BF01870071. [DOI] [PubMed] [Google Scholar]
  4. Dong J., Delamere N. A., Coca-Prados M. Inhibition of Na(+)-K(+)-ATPase activates Na(+)-K(+)-2Cl- cotransporter activity in cultured ciliary epithelium. Am J Physiol. 1994 Jan;266(1 Pt 1):C198–C205. doi: 10.1152/ajpcell.1994.266.1.C198. [DOI] [PubMed] [Google Scholar]
  5. Dufresne M., Bastie M. J., Vaysse N., Creach Y., Hollande E., Ribet A. The amiloride sensitive Na+/H+ antiport in guinea pig pancreatic acini. Characterization and stimulation by caerulein. FEBS Lett. 1985 Jul 22;187(1):126–130. doi: 10.1016/0014-5793(85)81227-8. [DOI] [PubMed] [Google Scholar]
  6. Evans L. A., Pirani D., Cook D. I., Young J. A. Intraepithelial current flow in rat pancreatic secretory epithelia. Pflugers Arch. 1986;407 (Suppl 2):S107–S111. doi: 10.1007/BF00584938. [DOI] [PubMed] [Google Scholar]
  7. Foskett J. K. [Ca2+]i modulation of Cl- content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol. 1990 Dec;259(6 Pt 1):C998–1004. doi: 10.1152/ajpcell.1990.259.6.C998. [DOI] [PubMed] [Google Scholar]
  8. Gamba G., Miyanoshita A., Lombardi M., Lytton J., Lee W. S., Hediger M. A., Hebert S. C. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713–17722. [PubMed] [Google Scholar]
  9. Gardner J. D., Jensen R. T. Receptors and cell activation associated with pancreatic enzyme secretion. Annu Rev Physiol. 1986;48:103–117. doi: 10.1146/annurev.ph.48.030186.000535. [DOI] [PubMed] [Google Scholar]
  10. Grinstein S., Foskett J. K. Ionic mechanisms of cell volume regulation in leukocytes. Annu Rev Physiol. 1990;52:399–414. doi: 10.1146/annurev.ph.52.030190.002151. [DOI] [PubMed] [Google Scholar]
  11. Harootunian A. T., Kao J. P., Eckert B. K., Tsien R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem. 1989 Nov 15;264(32):19458–19467. [PubMed] [Google Scholar]
  12. Ishikawa T., Kanno T. Potassium transport across basolateral membrane of acinar cells in the perfused rat pancreas. Am J Physiol. 1991 Oct;261(4 Pt 1):G570–G577. doi: 10.1152/ajpgi.1991.261.4.G570. [DOI] [PubMed] [Google Scholar]
  13. Kanno T., Yamamoto M. Differentiation between the calcium-dependent effects of cholecystokinin-pancreaozymin and the bicarbonate-dependent effects of secretin in exocrine secretion of the rat pancreas. J Physiol. 1977 Jan;264(3):787–799. doi: 10.1113/jphysiol.1977.sp011694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koncz C., Daugirdas J. T. Use of MQAE for measurement of intracellular [Cl-] in cultured aortic smooth muscle cells. Am J Physiol. 1994 Dec;267(6 Pt 2):H2114–H2123. doi: 10.1152/ajpheart.1994.267.6.H2114. [DOI] [PubMed] [Google Scholar]
  15. Kuijpers G. A., De Pont J. J. Role of proton and bicarbonate transport in pancreatic cell function. Annu Rev Physiol. 1987;49:87–103. doi: 10.1146/annurev.ph.49.030187.000511. [DOI] [PubMed] [Google Scholar]
  16. Lauf P. K., McManus T. J., Haas M., Forbush B., 3rd, Duhm J., Flatman P. W., Saier M. H., Jr, Russell J. M. Physiology and biophysics of chloride and cation cotransport across cell membranes. Fed Proc. 1987 May 15;46(7):2377–2394. [PubMed] [Google Scholar]
  17. Maruyama Y., Peterson O. H. Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature. 1982 Sep 9;299(5879):159–161. doi: 10.1038/299159a0. [DOI] [PubMed] [Google Scholar]
  18. Minta A., Tsien R. Y. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989 Nov 15;264(32):19449–19457. [PubMed] [Google Scholar]
  19. Muallem S., Loessberg P. A. Intracellular pH-regulatory mechanisms in pancreatic acinar cells. I. Characterization of H+ and HCO3- transporters. J Biol Chem. 1990 Aug 5;265(22):12806–12812. [PubMed] [Google Scholar]
  20. Muallem S., Loessberg P. A. Intracellular pH-regulatory mechanisms in pancreatic acinar cells. II. Regulation of H+ and HCO3- transporters by Ca2(+)-mobilizing agonists. J Biol Chem. 1990 Aug 5;265(22):12813–12819. [PubMed] [Google Scholar]
  21. Muallem S. The ins and outs of Ca2+ in exocrine cells. Adv Second Messenger Phosphoprotein Res. 1992;26:351–368. [PubMed] [Google Scholar]
  22. O'Doherty J., Stark R. J. A transcellular route for Na-coupled Cl transport in secreting pancreatic acinar cells. Am J Physiol. 1983 Oct;245(4):G499–G503. doi: 10.1152/ajpgi.1983.245.4.G499. [DOI] [PubMed] [Google Scholar]
  23. O'Doherty J., Stark R. J. Stimulation of pancreatic acinar secretion: increases in cytosolic calcium and sodium. Am J Physiol. 1982 May;242(5):G513–G521. doi: 10.1152/ajpgi.1982.242.5.G513. [DOI] [PubMed] [Google Scholar]
  24. Petersen O. H., Findlay I. Electrophysiology of the pancreas. Physiol Rev. 1987 Jul;67(3):1054–1116. doi: 10.1152/physrev.1987.67.3.1054. [DOI] [PubMed] [Google Scholar]
  25. Petersen O. H., Singh J. Acetylcholine-evoked potassium release in the mouse pancreas. J Physiol. 1985 Aug;365:319–329. doi: 10.1113/jphysiol.1985.sp015775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petersen O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992 Mar;448:1–51. doi: 10.1113/jphysiol.1992.sp019028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Petersen O. H., Ueda N. Secretion of fluid and amylase in the perfused rat pancreas. J Physiol. 1977 Jan;264(3):819–835. doi: 10.1113/jphysiol.1977.sp011696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robertson M. A., Foskett J. K. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i. Am J Physiol. 1994 Jul;267(1 Pt 1):C146–C156. doi: 10.1152/ajpcell.1994.267.1.C146. [DOI] [PubMed] [Google Scholar]
  29. Seow K. T., Lingard J. M., Young J. A. Anionic basis of fluid secretion by rat pancreatic acini in vitro. Am J Physiol. 1986 Feb;250(2 Pt 1):G140–G148. doi: 10.1152/ajpgi.1986.250.2.G140. [DOI] [PubMed] [Google Scholar]
  30. Singh J. Effects of acetylcholine and caerulein on 86Rb+ efflux in the mouse pancreas. Evidence for a sodium-potassium-chloride cotransport system. Biochim Biophys Acta. 1984 Aug 8;775(1):77–85. doi: 10.1016/0005-2736(84)90237-2. [DOI] [PubMed] [Google Scholar]
  31. Thorn P., Petersen O. H. Activation of nonselective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. J Gen Physiol. 1992 Jul;100(1):11–25. doi: 10.1085/jgp.100.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vasseur M., Frangne R., Alvarado F. Buffer-dependent pH sensitivity of the fluorescent chloride-indicator dye SPQ. Am J Physiol. 1993 Jan;264(1 Pt 1):C27–C31. doi: 10.1152/ajpcell.1993.264.1.C27. [DOI] [PubMed] [Google Scholar]
  33. Whisenant N., Khademazad M., Muallem S. Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter. J Gen Physiol. 1993 Jun;101(6):889–908. doi: 10.1085/jgp.101.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Williams J. A., Blevins G. T., Jr Cholecystokinin and regulation of pancreatic acinar cell function. Physiol Rev. 1993 Oct;73(4):701–723. doi: 10.1152/physrev.1993.73.4.701. [DOI] [PubMed] [Google Scholar]
  35. Zhang B. X., Tortorici G., Xu X., Muallem S. Antagonists inactivate the inositol 1,4,5-trisphosphate (Ins-1,4,5-P3)-dependent Ca2+ channel independent of Ins-1,4,5-P3 metabolism. J Biol Chem. 1994 Jun 24;269(25):17132–17135. [PubMed] [Google Scholar]
  36. Zhao H., Muallem S. Agonist-specific regulation of [Na+]i in pancreatic acinar cells. J Gen Physiol. 1995 Dec;106(6):1243–1263. doi: 10.1085/jgp.106.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhao H., Star R. A., Muallem S. Membrane localization of H+ and HCO3- transporters in the rat pancreatic duct. J Gen Physiol. 1994 Jul;104(1):57–85. doi: 10.1085/jgp.104.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES